11,563 research outputs found
Charge and Magnetic Flux Correlations in Chern-Simons Theory with Fermions
Charge and magnetic flux bearing operators are introduced in Chern-Simons
theory both in its pure form and when it is coupled to fermions. The magnetic
flux creation operator turns out to be the Wilson line. The euclidean
correlation functions of these operators are shown to be local and are
evaluated exactly in the pure case and through an expansion in the inverse
fermion mass whenever these are present. Physical states only occur in the
presence of fermions and consist of composite charge-magnetic flux carrying
states which are in general anyonic. The large distance behavior of the
correlation functions indicates the condensation of charge and magnetic flux.Comment: Latex, 17 page
The oxygen vs. sodium (anti)correlation(s) in omega Cen
Recent exam of large samples of omega Cen giants shows that it shares with
mono-metallic globular clusters the presence of the sodium versus oxygen
anticorrelation, within each subset of stars with iron content in the range
-1.9<~[Fe/H]<~-1.3. These findings suggest that, while the second generation
formation history in omega Cen is more complex than that of mono-metallic
clusters, it shares some key steps with those simpler cluster. In addition, the
giants in the range -1.3<[Fe/H]<~-0.7 show a direct O--Na correlation, at
moderately low O, but Na up to 20 times solar. These peculiar Na abundances are
not shared by stars in other environments often assumed to undergo a similar
chemical evolution, such as in the field of the Sagittarius dwarf galaxy. These
O and Na abundances match well the yields of the massive asymptotic giant
branch stars (AGB) in the same range of metallicity, suggesting that the stars
at [Fe/H]>-1.3 in omega Cen are likely to have formed directly from the pure
ejecta of massive AGBs of the same metallicities. This is possible if the
massive AGBs of [Fe/H]>-1.3 in the progenitor system evolve when all the
pristine gas surrounding the cluster has been exhausted by the previous star
formation events, or the proto--cluster interaction with the Galaxy caused the
loss of a significant fraction of its mass, or of its dark matter halo, and the
supernova ejecta have been able to clear the gas out of the system. The absence
of dilution in the metal richer populations lends further support to a scenario
of the formation of second generation stars in cooling flows from massive AGB
progenitors. We suggest that the entire formation of omega Cen took place in a
few 10^8yr, and discuss the problem of a prompt formation of s--process
elements.Comment: The Astrophysical Journal, in pres
Inhomogeneous mechanical losses in micro-oscillators with high reflectivity coating
We characterize the mechanical quality factor of micro-oscillators covered by
a highly reflective coating. We test an approach to the reduction of mechanical
losses, that consists in limiting the size of the coated area to reduce the
strain and the consequent energy loss in this highly dissipative component.
Moreover, a mechanical isolation stage is incorporated in the device. The
results are discussed on the basis of an analysis of homogeneous and
non-homogeneous losses in the device and validated by a set of Finite-Element
models. The contributions of thermoelastic dissipation and coating losses are
separated and the measured quality factors are found in agreement with the
calculated values, while the absence of unmodeled losses confirms that the
isolation element integrated in the device efficiently uncouples the dynamics
of the mirror from the support system. Also the resonant frequencies evaluated
by Finite-Element models are in good agreement with the experimental data, and
allow the estimation of the Young modulus of the coating. The models that we
have developed and validated are important for the design of oscillating
micro-mirrors with high quality factor and, consequently, low thermal noise.
Such devices are useful in general for high sensitivity sensors, and in
particular for experiments of quantum opto-mechanics
Myelin pathology: Involvement of molecular chaperones and the promise of chaperonotherapy
The process of axon myelination involves various proteins including molecular chaperones. Myelin alteration is a common feature in neurological diseases due to structural and functional abnormalities of one or more myelin proteins. Genetic proteinopathies may occur either in the presence of a normal chaperoning system, which is unable to assist the defective myelin protein in its folding and migration, or due to mutations in chaperone genes, leading to functional defects in assisting myelin maturation/migration. The latter are a subgroup of genetic chaperonopathies causing demyelination. In this brief review, we describe some paradigmatic examples pertaining to the chaperonins Hsp60 (HSPD1, or HSP60, or Cpn60) and CCT (chaperonin-containing TCP-1). Our aim is to make scientists and physicians aware of the possibility and advantages of classifying patients depending on the presence or absence of a chaperonopathy. In turn, this subclassification will allow the development of novel therapeutic strategies (chaperonotherapy) by using molecular chaperones as agents or targets for treatment
Quantized Skyrmion Fields in 2+1 Dimensions
A fully quantized field theory is developped for the skyrmion topological
excitations of the O(3) symmetric CP-Nonlinear Sigma Model in 2+1D. The
method allows for the obtainment of arbitrary correlation functions of quantum
skyrmion fields. The two-point function is evaluated in three different
situations: a) the pure theory; b) the case when it is coupled to fermions
which are otherwise non-interacting and c) the case when an electromagnetic
interaction among the fermions is introduced. The quantum skyrmion mass is
explicitly obtained in each case from the large distance behavior of the
two-point function and the skyrmion statistics is inferred from an analysis of
the phase of this function. The ratio between the quantum and classical
skyrmion masses is obtained, confirming the tendency, observed in semiclassical
calculations, that quantum effects will decrease the skyrmion mass. A brief
discussion of asymptotic skyrmion states, based on the short distance behavior
of the two-point function, is also presented.Comment: Accepted for Physical Review
Detection of weak stochastic force in a parametrically stabilized micro opto-mechanical system
Measuring a weak force is an important task for micro-mechanical systems,
both when using devices as sensitive detectors and, particularly, in
experiments of quantum mechanics. The optimal strategy for resolving a weak
stochastic signal force on a huge background (typically given by thermal noise)
is a crucial and debated topic, and the stability of the mechanical resonance
is a further, related critical issue. We introduce and analyze the parametric
control of the optical spring, that allows to stabilize the resonance and
provides a phase reference for the oscillator motion, yet conserving a free
evolution in one quadrature of the phase space. We also study quantitatively
the characteristics of our micro opto-mechanical system as detector of
stochastic force for short measurement times (for quick, high resolution
monitoring) as well as for the longer term observations that optimize the
sensitivity. We compare a simple, naive strategy based on the evaluation of the
variance of the displacement (that is a widely used technique) with an optimal
Wiener-Kolmogorov data analysis. We show that, thanks to the parametric
stabilization of the effective susceptibility, we can more efficiently
implement Wiener filtering, and we investigate how this strategy improves the
performance of our system. We finally demonstrate the possibility to resolve
stochastic force variations well below 1% of the thermal noise
An ultra-low dissipation micro-oscillator for quantum opto-mechanics
Generating non-classical states of light by opto-mechanical coupling depends
critically on the mechanical and optical properties of micro-oscillators and on
the minimization of thermal noise. We present an oscillating micro-mirror with
a mechanical quality factor Q = 2.6x10^6 at cryogenic temperature and a Finesse
of 65000, obtained thanks to an innovative approach to the design and the
control of mechanical dissipation. Already at 4 K with an input laser power of
2 mW, the radiation-pressure quantum fluctuations become the main noise source,
overcoming thermal noise. This feature makes our devices particularly suitable
for the production of pondero-motive squeezing.Comment: 21 pages including Supplementary Informatio
A unique model for the variety of multiple populations formation(s) in globular clusters: a temporal sequence
We explain the multiple populations recently found in the 'prototype'
Globular Cluster (GC) NGC 2808 in the framework of the asymptotic giant branch
(AGB) scenario. The chemistry of the five -or more- populations is
approximately consistent with a sequence of star formation events, starting
after the supernovae type II epoch, lasting approximately until the time when
the third dredge up affects the AGB evolution (age ~90-120Myr), and ending when
the type Ia supernovae begin exploding in the cluster, eventually clearing it
from the gas. The formation of the different populations requires episodes of
star formation in AGB gas diluted with different amounts of pristine gas. In
the nitrogen-rich, helium-normal population identified in NGC 2808 by the UV
Legacy Survey of GCs, the nitrogen increase is due to the third dredge up in
the smallest mass AGB ejecta involved in the star formation of this population.
The possibly-iron-rich small population in NGC 2808 may be a result of
contamination by a single type Ia supernova. The NGC 2808 case is used to build
a general framework to understand the variety of 'second generation' stars
observed in GCs. Cluster-to-cluster variations are ascribed to differences in
the effects of the many processes and gas sources which may be involved in the
formation of the second generation. We discuss an evolutionary scheme, based on
pollution by delayed type II supernovae, which accounts for the properties of
s-Fe-anomalous clusters.Comment: 20 pages, 7 figures, in press on MNRA
- …