271 research outputs found

    Altered p16INK4 and RB1 Expressions Are Associated with Poor Prognosis in Patients with Nonsmall Cell Lung Cancer

    Get PDF
    p16INK4 and RB1 are two potent cell cycle regulators to control the G1/S transition by interacting with CDK4/6, E2F, and D-type cyclins, respectively. Depending on the tumour type, genetic alterations resulting in the functional inactivation have frequently been reported in both genes. By contrast, much less is known regarding the overexpression of these proteins in the tumor cells. In this study, expressions of p16INK4 RB1, and CDKN2A copy number variances (CNV) in the tumor cells were assessed by immunohistochemistry and fluorescence in situ hybridization (FISH), respectively, in 73 nonsmall cell lung cancer (NSCLC) with known 5-year survivals. The histologic type (P = 0.01), p16INK4 (P = 0.004), and RB1 (P < 0.001) were predictive of survivals. The CDKN2A CNV (P < 0.05) was also significant when compared to those cases without CNV. Therefore, among the molecular genetic prognostic factors, expressions of RB1 and p16INK4 in the tumor cells were the most strongly predictive of adverse outcomes in stage I and II nonsquamous NSCLC

    Search for an Annual Modulation in a P-type Point Contact Germanium Dark Matter Detector

    Get PDF
    Fifteen months of cumulative CoGeNT data are examined for indications of an annual modulation, a predicted signature of Weakly Interacting Massive Particle (WIMP) interactions. Presently available data support the presence of a modulated component of unknown origin, with parameters prima facie compatible with a galactic halo composed of light-mass WIMPs. Unoptimized estimators yield a statistical significance for a modulation of ~2.8 sigma, limited by the short exposure.Comment: Published version, slightly expanded discussion of ROI uncertainties, one reference adde

    The Majorana experiment: an ultra-low background search for neutrinoless double-beta decay

    Full text link
    The observation of neutrinoless double-beta decay would resolve the Majorana nature of the neutrino and could provide information on the absolute scale of the neutrino mass. The initial phase of the Majorana experiment, known as the Demonstrator, will house 40 kg of Ge in an ultra-low background shielded environment at the 4850' level of the Sanford Underground Laboratory in Lead, SD. The objective of the Demonstrator is to determine whether a future 1-tonne experiment can achieve a background goal of one count per tonne-year in a narrow region of interest around the 76Ge neutrinoless double-beta decay peak.Comment: Presentation for the Rutherford Centennial Conference on Nuclear Physic

    The MAJORANA DEMONSTRATOR: A Search for Neutrinoless Double-beta Decay of Germanium-76

    Full text link
    The observation of neutrinoless double-beta decay would determine whether the neutrino is a Majorana particle and provide information on the absolute scale of neutrino mass. The MAJORANA Collaboration is constructing the DEMONSTRATOR, an array of germanium detectors, to search for neutrinoless double-beta decay of 76-Ge. The DEMONSTRATOR will contain 40 kg of germanium; up to 30 kg will be enriched to 86% in 76-Ge. The DEMONSTRATOR will be deployed deep underground in an ultra-low-background shielded environment. Operation of the DEMONSTRATOR aims to determine whether a future tonne-scale germanium experiment can achieve a background goal of one count per tonne-year in a 4-keV region of interest around the 76-Ge neutrinoless double-beta decay Q-value of 2039 keV.Comment: Submitted to AIP Conference Proceedings, 19th Particles & Nuclei International Conference (PANIC 2011), Massachusetts Institute of Technology, Cambridge, MA, USA, July 24-29, 2011; 3 pages, 1 figur

    Properties of stellar generations in Globular Clusters and relations with global parameters

    Full text link
    ABRIDGED) We revise the formation of Galactic GCs by adding the detailed chemical composition of their different stellar generations (from 1200 giants in 19 GCs) to their global parameters. We propose to identify as GCs those showing the Na-O anticorrelation, and we classify the GCs according to kinematics and location in the Galaxy in disk/bulge, inner, and outer halo. We find that the LF of GCs is fairly independent of their population, suggesting that it is imprinted by the formation mechanism, and only marginally affected by the ensuing evolution. We show that a large fraction of the primordial population should have been lost by the proto-GCs. The extremely low Al abundances found for the primordial population of massive GCs indicate a very fast enrichment process before the formation of the primordial population. We suggest a scenario for the formation of GCs including at least 3 main phases: i) the formation of a precursor population (likely due to the interaction of cosmological structures similar to those leading to dwarf spheroidals, but residing at smaller Rgc, with the early Galaxy or with other structures), ii) which triggers a large episode of star formation (the primordial population), and iii) the formation of the current GC, mainly within a cooling flow formed by the slow winds of a fraction of the primordial population. The precursor population is very effective in raising the metal content in massive and/or metal poor (mainly halo) clusters, while its role is minor in small and/or metal rich (mainly disk) ones. Finally, we use PCA and multivariate relations to study the phase of metal-enrichment from 1st to 2nd generation. Most of the chemical signatures of GCs may be ascribed to a few parameters, the most important being [Fe/H], mass, and age of the cluster, with the location within the Galaxy also playing some role.Comment: 24 pages (+2 pages of bibliography and 5 of Appendix), 19 figures, accepted for publication on Astronomy and Astrophysic
    corecore