9,548 research outputs found
Optical analogue of spontaneous symmetry breaking induced by tachyon condensation in amplifying plasmonic arrays
We study analytically and numerically an optical analogue of tachyon
condensation in amplifying plasmonic arrays. Optical propagation is modeled
through coupled-mode equations, which in the continuous limit can be converted
into a nonlinear one-dimensional Dirac-like equation for fermionic particles
with imaginary mass, i.e. fermionic tachyons. We demonstrate that the vacuum
state is unstable and acquires an expectation value with broken chiral
symmetry, corresponding to the homogeneous nonlinear stationary solution of the
system. The quantum field theory analogue of this process is the condensation
of unstable fermionic tachyons into massive particles. This paves the way for
using amplifying plasmonic arrays as a classical laboratory for spontaneous
symmetry breaking effects in quantum field theory.Comment: 5 pages, 5 figure
Interface pinning and slow ordering kinetics on infinitely ramified fractal structures
We investigate the time dependent Ginzburg-Landau (TDGL) equation for a non
conserved order parameter on an infinitely ramified (deterministic) fractal
lattice employing two alternative methods: the auxiliary field approach and a
numerical method of integration of the equations of evolution. In the first
case the domain size evolves with time as , where is
the anomalous random walk exponent associated with the fractal and differs from
the normal value 2, which characterizes all Euclidean lattices. Such a power
law growth is identical to the one observed in the study of the spherical model
on the same lattice, but fails to describe the asymptotic behavior of the
numerical solutions of the TDGL equation for a scalar order parameter. In fact,
the simulations performed on a two dimensional Sierpinski Carpet indicate that,
after an initial stage dominated by a curvature reduction mechanism \`a la
Allen-Cahn, the system enters in a regime where the domain walls between
competing phases are pinned by lattice defects.
The lack of translational invariance determines a rough free energy
landscape, the existence of many metastable minima and the suppression of the
marginally stable modes, which in translationally invariant systems lead to
power law growth and self similar patterns. On fractal structures as the
temperature vanishes the evolution is frozen, since only thermally activated
processes can sustain the growth of pinned domains.Comment: 16 pages+14 figure
Oral malodor in Special Care Patients: current knowledge
Epidemiological studies report that about 50% of the population may have oral malodor
with a strong social and psychological impact in their daily life. When intra-oral causes are
excluded, referral to an appropriate medical specialist is paramount for management and
treatment of extra-oral causes. The intra-oral causes of halitosis are highly common, and the
dentist is the central clinician to diagnose and treat them. Pseudohalitosis or halitophobia
may occur and an early identification of these conditions by the dentist is important in order
to avoid unnecessary dental treatments for patients who need psychological or psychiatric
therapy. The organoleptic technique is still considered the most reliable examination method
to diagnose genuine halitosis. Special needs patients are more prone than others to have
oral malodor because of concurrent systemic or metabolic diseases, and medications.
The present report reviews halitosis, its implications, and the management in special care
dentistry
Maturity related differences in body composition assessed by classic and specific bioimpedance vector analysis among male elite youth soccer players
The aim of this study was to analyze the efficiency of classic and specific bioelectrical impedance vector analysis (BIVA) in the assessment of maturity related differences in body composition among male elite youth soccer players, and to provide bioelectrical impedance reference data for this category. A group of 178 players (aged 12.1 \ub1 1.6 years) were registered in a professional Italian soccer team participating in the first division (Serie A). They were divided into three groups according to their maturity status while bioelectrical resistance and reactance were obtained. The classic and specific BIVA procedures were applied, which correct bioelectrical values for body height and body geometry, respectively. Percentage of fat mass (FM%) and total body water (TBW (L)) were estimated from bioelectrical values. Age-specific z-scores of the predicted age at peak height velocity identified 29 players as earlier-, 126 as on time-, and 23 as later-maturing. TBW was higher (p < 0.01) in adolescents classified as \u201cearly\u201d maturity status compared to the other two groups and classic BIVA confirmed these results. Conversely, no differences in FM% were found among the groups. Specific vector length showed a higher correlation (r = 0.748) with FM% compared with the classic approach (r = 0.493). Classic vector length showed a stronger association (r = 120.955) with TBW compared with specific (r = 120.263). Specific BIVA turns out to be accurate for the analysis of FM% in athletes, while classic BIVA shows to be a valid approach to evaluate TBW. An original data set of bioelectric impedance reference values of male elite youth soccer players was provided
Dynamic density functional study of a driven colloidal particle in polymer solutions
The Dynamic Density Functional (DDF) theory and standard Brownian dynamics
simulations (BDS) are used to study the drifting effects of a colloidal
particle in a polymer solution, both for ideal and interacting polymers. The
structure of the stationary density distributions and the total induced current
are analyzed for different drifting rates. We find good agreement with the BDS,
which gives support to the assumptions of the DDF theory. The qualitative
aspect of the density distribution are discussed and compared to recent results
for driven colloids in one-dimensional channels and to analytical expansions
for the ideal solution limit
Effects of a 12-week suspension versus traditional resistance training program on body composition, bioimpedance vector patterns, and handgrip strength in older men: A randomized controlled trial
This investigation aimed to compare the effects of suspension training versus traditional resistance exercise using a combination of bands and bodyweight on body composition, bioimpedance vector patterns, and handgrip strength in older men. Thirty-six older men (age 67.4 ± 5.1 years, BMI 27.1 ± 3.3 kg/m2) were randomly allocated into suspension training (n = 12), traditional training (n = 13), or non-exercise (n = 11) groups over a 12-week study period. Body composition was assessed using conventional bioelectrical impedance analysis and classic and specific bioelectric impedance vector analysis, and handgrip strength was measured with a dynamometer. Results showed a significant (p < 0.05) group by time interaction for fat mass, fat-free mass, total body water, skeletal muscle index, classic and specific bioelectrical resistance, classic bioelectrical reactance, phase angle, and dominant handgrip strength. Classic and specific vector displacements from baseline to post 12 weeks for the three groups were observed. Handgrip strength increased in the suspension training group (p < 0.01, ES: 1.50), remained stable in the traditional training group, and decreased in the control group (p < 0.01, ES: −0.86). Although bodyweight and elastic band training helps to prevent a decline in muscle mass and handgrip strength, suspension training proved more effective in counteracting the effects of aging in older men under the specific conditions studied
Real-Time Monitoring of Temperature-Dependent Structural Transitions in DNA Nanomechanical Resonators: Unveiling the DNA-Ligand Interactions for Biomedical Applications
Despite being widely recognized as of paramount importance in molecular biology, real-time monitoring of structural transitions in DNA complexes is currently limited to complex techniques and chemically modified oligonucleotides. Here, we show that nanomechanical resonators made of different DNA complexes, such as pristine dsDNA, ssDNA, and DNA intercalated with dye molecules or chemotherapeutic agents, are characterized by unique fingerprint curves when their flexural resonance frequency is tracked as a function of temperature. Such frequency shifts can be successfully used to monitor structural variations in DNA complexes, such as B-to-A form and helix-to-coil transitions, thus opening implications in both environmental studies─for example, trucking the effects of heavy metal exposure on human or vegetable DNA molecules─and in vitro experiments for the evaluation of the effects of drugs on patient DNA
Soil management shapes ecosystem service provision and trade-offs in agricultural landscapes
Agroecosystems are principally managed to maximize food provisioning even if they receive a large array of supporting and regulating ecosystem services (ESs). Hence, comprehensive studies investigating the effects of local management and landscape composition on the provision of and trade-offs between multiple ESs are urgently needed. We explored the effects of conservation tillage, nitrogen fertilization and landscape composition on six ESs (crop production, disease control, soil fertility, water quality regulation, weed and pest control) in winter cereals. Conservation tillage enhanced soil fertility and pest control, decreased water quality regulation and weed control, without affecting crop production and disease control. Fertilization only influenced crop production by increasing grain yield. Landscape intensification reduced the provision of disease and pest control. We also found tillage and landscape composition to interactively affect water quality regulation and weed control. Under N fertilization, conventional tillage resulted in more trade-offs between ESs than conservation tillage. Our results demonstrate that soil management and landscape composition affect the provision of several ESs and that soil management potentially shapes the trade-offs between them
Extreme flooding events in coastal lagoons: seawater parameters and rainfall over a six-year period in the Mar Menor (SE Spain)
Climate change is one of the main problems currently strongly conditioning ecosystems all over the world. Coastal lagoons are amongst the most vulnerable habitats, and they are undergoing extensive human impact due to their high production rates and the close proximity of urban and agricultural centers. The Mar Menor, the largest saltwater lagoon in Europe, is an example of a highly impacted ecosystem. In December 2016 and September 2019, climate change-induced DANA
(upper-level isolated atmospheric depression) flooding events took place there, temporarily altering the lagoon oceanographic properties. Data gathered throughout the lagoon (11 stations inside and 1 outside the lagoon) from 2016 to 2021 were analyzed in order to assess the variability of seawater parameters: salinity, density, chlorophyll-a, turbidity, and dissolved oxygen, due to DANA events.
Results showed a change in seawater parameters that were reestablished at different rates, 4 and 10 months in 2016 and 2019, respectively, following a description of the environmental conditions and effects that have been reported after extreme rainfall in the lagoon. The amount of rainfall correlated with changes in the analyzed seawater parameters, such as an increase in turbidity and chlorophyll-a values. Furthermore, turbidity correlated with chlorophyll-a and oxygen saturation,
while density correlated with salinity. Such extreme weather events are worsened by climate change, growing more frequent and between shorter intervals in time. In order to decelerate ecosystem decline, comprehensive management plans are needed to address the various factors that might add to anthropic impacts in natural environments
- …