186 research outputs found
Recommended from our members
Near-Real-Time Measurement Of Sea-Salt Aerosol During the Seas Campaign: Comparison Of Emission-Based Sodium Detection With an Aerosol Volatility Technique
The first deployment of an emission-based aerosol sodium detector (ASD), designed to chemically characterize marine aerosols on a near-real-time basis, is reported. Deployment occurred as part of the Shoreline Environment Aerosol Study ( SEAS) from 16 April to 1 May 2000 at Bellows Air Force Base on the east side of Oahu, where the University of Hawaii\u27s Department of Oceanography maintains a tower for aerosol measurements. The instrument was operated in size-unsegregated mode and measurements were made that included two extended continuous sampling periods, each of which lasted for 24 h. During this time, the ASD was compared with measurements that used aerosol volatility coupled with optical particle counting to infer sea-salt size distributions. A reasonable agreement was obtained between the instruments when sampling in clean air, suggesting that under these conditions both approaches can provide reliable sea-salt distributions. The combination of these measurements suggested that sea salt was the dominant constituent of aerosol particles with diameters larger than 500 nm and that sulfate was the dominant constituent at smaller diameters during clean air sampling
Global statistics of liquid water content and effective number concentration of water clouds over ocean derived from combined CALIPSO and MODIS measurements
This study presents an empirical relation that links the volume extinction coefficients of water clouds, the layer integrated depolarization ratios measured by lidar, and the effective radii of water clouds derived from collocated passive sensor observations. Based on Monte Carlo simulations of CALIPSO lidar observations, this method combines the cloud effective radius reported by MODIS with the lidar depolarization ratios measured by CALIPSO to estimate both the liquid water content and the effective number concentration of water clouds. The method is applied to collocated CALIPSO and MODIS measurements obtained during July and October of 2006, and January 2007. Global statistics of the cloud liquid water content and effective number concentration are presented
Recommended from our members
The Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) Mission: Design, Execution, and First Results
The NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission was conducted in two 3-week deployments based in Alaska (April 2008) and western Canada (JuneâJuly 2008). Its goal was to better understand the factors driving current changes in Arctic atmospheric composition and climate, including (1) influx of mid-latitude pollution, (2) boreal forest fires, (3) aerosol radiative forcing, and (4) chemical processes. The JuneâJuly deployment was preceded by one week of flights over California (ARCTAS-CARB) focused on (1) improving state emission inventories for greenhouse gases and aerosols, (2) providing observations to test and improve models of ozone and aerosol pollution. ARCTAS involved three aircraft: a DC-8 with a detailed chemical payload, a P-3 with an extensive aerosol and radiometric payload, and a B-200 with aerosol remote sensing instrumentation. The aircraft data augmented satellite observations of Arctic atmospheric composition, in particular from the NASA A-Train. The spring phase (ARCTAS-A) revealed pervasive Asian pollution throughout the Arctic as well as significant European pollution below 2 km. Unusually large Siberian fires in April 2008 caused high concentrations of carbonaceous aerosols and also affected ozone. Satellite observations of BrO column hotspots were found not to be related to Arctic boundary layer events but instead to tropopause depressions, suggesting the presence of elevated inorganic bromine (5â10 pptv) in the lower stratosphere. Fresh fire plumes from Canada and California sampled during the summer phase (ARCTAS-B) indicated low emission factors from the fires, rapid conversion of to PAN, no significant secondary aerosol production, and no significant ozone enhancements except when mixed with urban pollution.Engineering and Applied Science
Oscillatory Shear Flow-Induced Alignment of Lamellar Melts of Hydrogen-Bonded Comb Copolymer Supramolecules
In this work we present the orientational behavior of comb copolymer-like supramolecules P4VP(PDP)1.0, obtained by hydrogen bonding between poly(4-vinylpyridine) and pentadecylphenol, during large-amplitude oscillatory shear flow experiments over a broad range of frequencies (0.001-10 Hz). The alignment diagram, presenting the macroscopic alignment in T/TODT vs Ï/Ïc, contains three regions of parallel alignment separated by a region of perpendicular alignment. For our material, the order-disorder temperature TODT = 67 °C and Ïc, the frequency above which the distortion of the chain conformation dominates the materialsâ viscoelasticity, is around 0.1 Hz at 61 °C. For the first time flipping from a pure transverse alignment via biaxial transverse/perpendicular alignment to a perpendicular alignment as a function of the strain amplitude was found.
Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: estimates based on in-situ chemical and optical measurements and chemical transport modeling
International audienceThe largest uncertainty in the radiative forcing of climate change over the industrial era is that due to aerosols, a substantial fraction of which is the uncertainty associated with scattering and absorption of shortwave (solar) radiation by anthropogenic aerosols in cloud-free conditions (IPCC, 2001). Quantifying and reducing the uncertainty in aerosol influences on climate is critical to understanding climate change over the industrial period and to improving predictions of future climate change for assumed emission scenarios. Measurements of aerosol properties during major field campaigns in several regions of the globe during the past decade are contributing to an enhanced understanding of atmospheric aerosols and their effects on light scattering and climate. The present study, which focuses on three regions downwind of major urban/population centers (North Indian Ocean (NIO) during INDOEX, the Northwest Pacific Ocean (NWP) during ACE-Asia, and the Northwest Atlantic Ocean (NWA) during ICARTT), incorporates understanding gained from field observations of aerosol distributions and properties into calculations of perturbations in radiative fluxes due to these aerosols. This study evaluates the current state of observations and of two chemical transport models (STEM and MOZART). Measurements of burdens, extinction optical depth (AOD), and direct radiative effect of aerosols (DRE ? change in radiative flux due to total aerosols) are used as measurement-model check points to assess uncertainties. In-situ measured and remotely sensed aerosol properties for each region (mixing state, mass scattering efficiency, single scattering albedo, and angular scattering properties and their dependences on relative humidity) are used as input parameters to two radiative transfer models (GFDL and University of Michigan) to constrain estimates of aerosol radiative effects, with uncertainties in each step propagated through the analysis. Constraining the radiative transfer calculations by observational inputs increases the clear-sky, 24-h averaged AOD (34±8%), top of atmosphere (TOA) DRE (32±12%), and TOA direct climate forcing of aerosols (DCF ? change in radiative flux due to anthropogenic aerosols) (37±7%) relative to values obtained with "a priori" parameterizations of aerosol loadings and properties (GFDL RTM). The resulting constrained TOA DCF is ?3.3±0.47, ?14±2.6, ?6.4±2.1 Wm?2 for the NIO, NWP, and NWA, respectively. Constraining the radiative transfer calculations by observational inputs reduces the uncertainty range in the DCF in these regions relative to global IPCC (2001) estimates by a factor of approximately 2. Such comparisons with observations and resultant reductions in uncertainties are essential for improving and developing confidence in climate model calculations incorporating aerosol forcing
Acting on Reflection: the Effect of Reflection on Studentsâ Clinical Performance on a Standardized Patient Examination
BACKGROUND: Little evidence exists to support the value of reflection in the clinical setting. OBJECTIVE: To determine whether reflecting and revisiting the âpatientâ during a standardized patient (SP) examination improves junior medical studentsâ performance and to analyze studentsâ perceptions of its value. DESIGN: Students completed a six-encounter clinical skills examination, writing a guided assessment after each encounter to trigger reflection. SPs evaluated the students with Medical Skills and Patient Satisfaction checklists. During the last three encounters, students could opt to revisit the SP and be reevaluated with identical checklists. PARTICIPANTS: One hundred and forty-nine third year medical students. MEASUREMENTS: Changes in scores in the Medical Skills and Patient Satisfaction checklists between first visit and revisit were tested separately per case as well as across cases. RESULTS: On the medical skills and patient satisfaction checklists, mean revisit scores across cases were significantly higher than mean first visit scores [12.6 vs 12.2 (pooled SDâ=â2.4), Pâ=â.0001; 31.2 vs 31.0 (pooled SDâ=â3.5), Pâ=â.0001)]. Sixty-five percent of the time, students rated âreflectârevisitâ positively, 34% neutrally, and 0.4% negatively. Five themes were identified in the positive comments: enhancement of (1) medical decision making, (2) patient education/counseling, (3) student satisfaction/confidence, (4) patient satisfaction/confidence, and (5) clinical realism. CONCLUSIONS: Offering third year medical students the option to reflect and revisit an SP during a clinical skills examination produced a small but nontrivial increase in clinical performance. Students perceived the reflectârevisit experience as enhancing patient-centered practices (counseling, education) as well as their own medical decision making and clinical confidence
INDOEX aerosol: A comparison and summary of chemical, microphysical, and optical properties observed from land, ship, and aircraft
The Indian Ocean Experiment (INDOEX) measurements on land, sea, and in the air were designed to provide complementary assessment of chemical, physical, and optical properties of the haze aerosol over the Indian Ocean. Differences in platform requirements and objectives resulted in diverse techniques, measurements, and analyses being employed. In order to best interpret the properties of the INDOEX aerosol, comparisons of data by platform, air mass origin, and light scattering intensity were undertaken. These revealed significant variability in platform averages of aerosol extensive properties (e.g., mass, light scattering, and absorption) but less variability in intensive properties (e.g., mass scattering efficiency, single scattering albedo, backscatter fraction, and Ă
ngström exponent) and the ratios of constituents. In general, ratios of chemical species were found to show greater variability than properties of the size distributions or aerosol optical properties. Even so, at higher haze concentrations with higher scattering values, various determinations of the mass scattering efficiency (MSE) at 33% relative humidity converged on values of about 3.8 ± 0.3 m^2 g^(â1), providing a firm constraint upon the description and modeling of haze optical properties. MSE values trended lower with more dilute haze but became more variable in clean air or regions of low concentrations. This cross-platform comparison resolved a number of measurement differences but also revealed that regional characterization from different platforms results in differences linked to variability in time and space. This emphasizes the need to combine such efforts with coordinated satellite and modeling studies able to characterize large-scale regional structure and variability. These comparisons also indicate that âclosureâ between chemical, microphysical, and optical properties across platforms to better than about 20% will require significant improvements in techniques, calibration procedures, and comparison efforts
- âŠ