2,770 research outputs found

    Aircraft systems architecting: a functional-logical domain perspective

    Get PDF
    Presented is a novel framework for early systems architecture design. The framework defines data structures and algorithms that enable the systems architect to operate interactively and simultaneously in both the functional and logical domains. A prototype software tool, called AirCADia Architect, was implemented, which allowed the framework to be evaluated by practicing aircraft systems architects. The evaluation confirmed that, on the whole, the approach enables the architects to effectively express their creative ideas when synthesizing new architectures while still retaining control over the process

    Interactive uncertainty allocation and trade-off for early-stage design of complex systems

    Get PDF
    A common probabilistic approach to perform uncertainty allocation is to assign acceptable variability in the sources of uncertainty, such that prespecified probabilities of meeting performance constraints are satisfied. However, the computational cost of obtaining the associated tradeoffs increases significantly when more sources of uncertainty and more outputs are considered. Consequently, visualizing and exploring the decision (trade) space becomes increasingly difficult, which, in turn, makes the decision-making process cumbersome for practicing designers. To address this problem, proposed is a parameterization of the input probability distribution functions, to account for several statistical moments. This, combined with efficient uncertainty propagation and inverse computation techniques, results in a computational system that performs order(s) of magnitude faster than a state-of-the-art optimization technique. The approach is demonstrated by means of an illustrative example and a representative aircraft thermal system integration example

    Margin allocation and trade-off in complex systems design and optimization

    Get PDF
    Presented is an approach for interactive margin management. Existing methods enable a fixed set of allowable margin combinations to be identified, but these have limitations with regard to supporting interactive exploration of the effects of: 1) margins on other margins, 2) margins on performance and 3) margins on the probabilities of constraint satisfaction. To this purpose, the concept of a margin space is introduced. It is bi-directionally linked to the design space, to enable the designer to understand how assigning margins on certain parameters limits the allowable margins that can be assigned to other parameters. Also, a novel framework has been developed. It incorporates the margin space concept as well as enablers, including interactive visualization techniques, which can aide the designer to explore the margin and design spaces dynamically, as well as the effects of margins on the probability of constraint satisfaction and on performance. The framework was implemented into a prototype software tool, AirCADia, which was used for a qualitative evaluation by practicing designers. The evaluation, conducted as part of the EU TOICA project, demonstrated the usefulness of the approach

    Evolvability and design reuse in civil jet transport aircraft

    Get PDF
    A comprehensive investigation of evolvability and design reuse in new and historical civil jet transport aircraft was undertaken. The main purpose was to characterise the techniques and strategies used by aircraft manufacturers to evolve their designs. Such knowledge is essential to devise improved design methods for promoting the evolvability of new aircraft. To perform the study, jet aircraft from three large western manufacturers (Boeing, Airbus, and McDonnell Douglas) were investigated in depth. The academic and industrial literature was combed to find descriptions of design reuse and change across each major model of all three manufacturers. The causes and effects of the changes are explored, and the amenability of the different airframes to change are discussed. The evolution of the payload and range capabilities of the different aircraft was also investigated. From these studies, it was found that the initial approach to derivative designs appears somewhat ad hoc and that substantial modifications were devised in quick succession to increase both range and capacity. From the 1970s, two distinguishable patterns started to appear – a ‘leap and branch’ and a ‘Z’ pattern. The leaps correspond to major changes in both propulsion and airframe, whereas the branches are simple ‘stretches’ or ‘shrinks’. The Z pattern, also documented by other authors, is a progressive increase in range, followed by a simple stretch, and then another increase in range. Design changes were investigated further by grouping them according to the assumed payload-range objectives set for the derivatives. Finally, the maximum changes found for salient geometrical design parameters amongst all the aircraft surveyed were documented. Developing methods to support the creation of leaps (especially across configurations) appears to be one of the most promising avenues for future research

    Association of a dietary inflammatory index with cardiometabolic, endocrine, liver, renal and bones biomarkers: cross-sectional analysis of the UK Biobank study

    Get PDF
    \ua9 2024 The Author(s)Background and aims: Research into the relationship between an Energy-adjusted Diet-Inflammatory Index (E-DII) and a wider health-related biomarkers profile is limited. Much of the existing evidence centers on traditional metabolic biomarkers in populations with chronic diseases, with scarce data on healthy individuals. Thus, this study aims to investigate the association between an E-DII score and 30 biomarkers spanning metabolic health, endocrine, bone health, liver function, cardiovascular, and renal functions, in healthy individuals. Methods and results: 66,978 healthy UK Biobank participants, the overall mean age was 55.3 (7.9) years were included in this cross-sectional study. E-DII scores, based on 18 food parameters, were categorised as anti-inflammatory (E-DII < -1), neutral (−1 to 1), and pro-inflammatory (>1). Regression analyses, adjusted for confounding factors, were conducted to investigate the association of 30 biomarkers with E-DII. Compared to those with an anti-inflammatory diet, individuals with a pro-inflammatory diet had increased levels of 16 biomarkers, including six cardiometabolic, five liver, and four renal markers. The concentration difference ranged from 0.27 SD for creatinine to 0.03 SD for total cholesterol. Conversely, those on a pro-inflammatory diet had decreased concentrations in six biomarkers, including two for endocrine and cardiometabolic. The association range varied from −0.04 for IGF-1 to −0.23 for SHBG. Conclusion: This study highlighted that a pro-inflammatory diet was associated with an adverse profile of biomarkers linked to cardiometabolic health, endocrine, liver function, and renal health

    Observation of trapped light within the radiation continuum

    Get PDF
    The ability to confine light is important both scientifically and technologically. Many light confinement methods exist, but they all achieve confinement with materials or systems that forbid outgoing waves. These systems can be implemented by metallic mirrors, by photonic band-gap materials, by highly disordered media (Anderson localization) and, for a subset of outgoing waves, by translational symmetry (total internal reflection) or by rotational or reflection symmetry. Exceptions to these examples exist only in theoretical proposals. Here we predict and show experimentally that light can be perfectly confined in a patterned dielectric slab, even though outgoing waves are allowed in the surrounding medium. Technically, this is an observation of an ‘embedded eigenvalue’—namely, a bound state in a continuum of radiation modes—that is not due to symmetry incompatibility. Such a bound state can exist stably in a general class of geometries in which all of its radiation amplitudes vanish simultaneously as a result of destructive interference. This method to trap electromagnetic waves is also applicable to electronic and mechanical waves.United States. Army Research Office (Institute for Soldier Nanotechnologies under contract no. W911NF-07-D0004)United States. Department of Energy (grant no. DE-SC0001299)National Science Foundation (U.S.) (NSF grant no. DMR-0819762

    Evaluation of allergic and serological tests for diagnosing Brucella melitensis infection in sheep

    Get PDF
    A total of 291 unvaccinated sheep from Brucella melitensis-infected flocks were examined for delayed-type hypersensitivity (DTH) responses with Brucellergene commercial allergen and with cold saline extract and cytosol from rough B. melitensis 115, and their sera were tested in the rose bengal test (RBT), complement fixation test (CFT), and enzyme-linked immunosorbent assay (ELISA) with lipopolysaccharide. DTH reactions were maximal after 72 h, with no intensity differences among allergens, inoculation sites (eyelid and tail), and doses tested. There were no differences in the results recorded by visual inspection and palpation of inoculation sites, by measuring skin thickness with a caliper, or by microscopic examination of samples taken at necropsy; Six days after DTH testing, anergy was observed in 100% of the animals, and 100% reactivity was recovered only after 24 days. All animals were necropsied, and thorough bacteriological searches were performed. The sensitivities found with the 140 animals from which B. melitensis was isolated were ELISA, 100%; DTH, 97.1%; RBT, 92.1%; and CFT, 88.6%. Those results put into question the value of RBT and CFT as screening and confirmatory tests for sheep brucellosis and at least indicate that their standardization should be modified. For 151 tested sheep from which B. melitensis was not isolated, the percentages of positive animals were ELISA, 100%; DTH, 94.0%; RBT, 57.6%; and CFT, 53.6%. All tests were negative for 100 tested sheep from Brucella-free flocks. The different results of bacteriological and immunological tests suggest the usefulness of developing indirect tests able to distinguish truly infected animals from those that have developed an immunological response

    Highlights from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km2^2 str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our Xmax_{max} data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray Conference, Rio de Janeiro 201

    Azimuthal asymmetry in the risetime of the surface detector signals of the Pierre Auger Observatory

    Get PDF
    The azimuthal asymmetry in the risetime of signals in Auger surface detector stations is a source of information on shower development. The azimuthal asymmetry is due to a combination of the longitudinal evolution of the shower and geometrical effects related to the angles of incidence of the particles into the detectors. The magnitude of the effect depends upon the zenith angle and state of development of the shower and thus provides a novel observable, (sec⁡ξ)max(\sec \theta)_\mathrm{max}, sensitive to the mass composition of cosmic rays above 3×10183 \times 10^{18} eV. By comparing measurements with predictions from shower simulations, we find for both of our adopted models of hadronic physics (QGSJETII-04 and EPOS-LHC) an indication that the mean cosmic-ray mass increases slowly with energy, as has been inferred from other studies. However, the mass estimates are dependent on the shower model and on the range of distance from the shower core selected. Thus the method has uncovered further deficiencies in our understanding of shower modelling that must be resolved before the mass composition can be inferred from (sec⁡ξ)max(\sec \theta)_\mathrm{max}.Comment: Replaced with published version. Added journal reference and DO
    • 

    corecore