3,311 research outputs found

    Artwork

    Get PDF

    Impact of post-Born lensing on the CMB

    Get PDF
    Lensing of the CMB is affected by post-Born lensing, producing corrections to the convergence power spectrum and introducing field rotation. We show numerically that the lensing convergence power spectrum is affected at the lesssim 0.2% level on accessible scales, and that this correction and the field rotation are negligible for observations with arcminute beam and noise levels gsim 1 ÎŒK arcmin. The field rotation generates ~ 2.5% of the total lensing B-mode polarization amplitude (0.2% in power on small scales), but has a blue spectrum on large scales, making it highly subdominant to the convergence B modes on scales where they are a source of confusion for the signal from primordial gravitational waves. Since the post-Born signal is non-linear, it also generates a bispectrum with the convergence. We show that the post-Born contributions to the bispectrum substantially change the shape predicted from large-scale structure non-linearities alone, and hence must be included to estimate the expected total signal and impact of bispectrum biases on CMB lensing reconstruction quadratic estimators and other observables. The field-rotation power spectrum only becomes potentially detectable for noise levels Lt 1 ÎŒK arcmin, but its bispectrum with the convergence may be observable at ~ 3σ with Stage IV observations. Rotation-induced and convergence-induced B modes are slightly correlated by the bispectrum, and the bispectrum also produces additional contributions to the lensed BB power spectrum

    Structural steel crack propagation experimental and numerical analysis

    Get PDF
    This paper presents an investigation on the crack propagation testing for three grades of structural steel material. The methodology uses experimental analysis with a test setup based on the ASTM E647 standard and a compact tension (CT) test piece, and, finite element analyses (FEA) for crack propagation based on the ANSYS separating, morphing and adaptive remeshing (SMART) tool. The FEA CT modelling is first used to develop front face compliance functions to relate the crack mouth opening displacement (CMOD) to the crack length. A set of CT test pieces were manufactured and then cyclically loaded on an Instron 8801 load frame and CMOD was measured against number of cycles. The steel material fracture mechanics based fatigue property was then estimated giving the crack growth rates for the Paris Law. The FEA models were then updated with the measured Paris Law coefficients and a SMART fatigue analysis was performed numerically and compared with the experimental results. The study showed that a hybrid numerical experimental methodology can be used to estimate fatigue crack growth material properties successfully with reasonable accuracy in a controlled laboratory environment

    Organellar inheritance in the green lineage: insights from Ostreococcus tauri

    Get PDF
    Along the green lineage (Chlorophyta and Streptophyta), mitochondria and chloroplast are mainly uniparentally transmitted and their evolution is thus clonal. The mode of organellar inheritance in their ancestor is less certain. The inability to make clear phylogenetic inference is partly due to a lack of information for deep branching organisms in this lineage. Here, we investigate organellar evolution in the early branching green alga Ostreococcus tauri using population genomics data from the complete mitochondrial and chloroplast genomes. The haplotype structure is consistent with clonal evolution in mitochondria, while we find evidence for recombination in the chloroplast genome. The number of recombination events in the genealogy of the chloroplast suggests that recombination, and thus biparental inheritance, is not rare. Consistent with the evidence of recombination, we find that the ratio of the number of nonsynonymous to the synonymous polymorphisms per site is lower in chloroplast than in the mitochondria genome. We also find evidence for the segregation of two selfish genetic elements in the chloroplast. These results shed light on the role of recombination and the evolutionary history of organellar inheritance in the green lineage

    Toward a new data standard for combined marine biological and environmental datasets - expanding OBIS beyond species occurrences

    Get PDF
    The Ocean Biogeographic Information System (OBIS) is the world's most comprehensive online, open-access database of marine species distributions. OBIS grows with millions of new species observations every year. Contributions come from a network of hundreds of institutions, projects and individuals with common goals: to build a scientific knowledge base that is open to the public for scientific discovery and exploration and to detect trends and changes that inform society as essential elements in conservation management and sustainable development. Until now, OBIS has focused solely on the collection of biogeographic data (the presence of marine species in space and time) and operated with optimized data flows, quality control procedures and data standards specifically targeted to these data. Based on requirements from the growing OBIS community to manage datasets that combine biological, physical and chemical measurements, the OBIS-ENV-DATA pilot project was launched to develop a proposed standard and guidelines to make sure these combined datasets can stay together and are not, as is often the case, split and sent to different repositories. The proposal in this paper allows for the management of sampling methodology, animal tracking and telemetry data, biological measurements (e.g., body length, percent live cover, ...) as well as environmental measurements such as nutrient concentrations, sediment characteristics or other abiotic parameters measured during sampling to characterize the environment from which biogeographic data was collected. The recommended practice builds on the Darwin Core Archive (DwC-A) standard and on practices adopted by the Global Biodiversity Information Facility (GBIF). It consists of a DwC Event Core in combination with a DwC Occurrence Extension and a proposed enhancement to the DwC MeasurementOrFact Extension. This new structure enables the linkage of measurements or facts - quantitative and qualitative properties - to both sampling events and species occurrences, and includes additional fields for property standardization. We also embrace the use of the new parentEventID DwC term, which enables the creation of a sampling event hierarchy. We believe that the adoption of this recommended practice as a new data standard for managing and sharing biological and associated environmental datasets by IODE and the wider international scientific community would be key to improving the effectiveness of the knowledge base, and will enhance integration and management of critical data needed to understand ecological and biological processes in the ocean, and on land.Fil: De Pooter, Daphnis. Flanders Marine Institute; BélgicaFil: Appeltans, Ward. UNESCO-IOC; BélgicaFil: Bailly, Nicolas. Hellenic Centre for Marine Research, MedOBIS; GreciaFil: Bristol, Sky. United States Geological Survey; Estados UnidosFil: Deneudt, Klaas. Flanders Marine Institute; BélgicaFil: Eliezer, MenashÚ. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Fujioka, Ei. University Of Duke. Nicholas School Of Environment. Duke Marine Lab; Estados UnidosFil: Giorgetti, Alessandra. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Goldstein, Philip. University of Colorado Museum of Natural History, OBIS; Estados UnidosFil: Lewis, Mirtha Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; ArgentinaFil: Lipizer, Marina. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Mackay, Kevin. National Institute of Water and Atmospheric Research; Nueva ZelandaFil: Marin, Maria Rosa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico; ArgentinaFil: Moncoiffé, Gwenaëlle. British Oceanographic Data Center; Reino UnidoFil: Nikolopoulou, Stamatina. Hellenic Centre for Marine Research, MedOBIS; GreciaFil: Provoost, Pieter. UNESCO-IOC; BélgicaFil: Rauch, Shannon. Woods Hole Oceanographic Institution; Estados UnidosFil: Roubicek, Andres. CSIRO Oceans and Atmosphere; AustraliaFil: Torres, Carlos. Universidad Autonoma de Baja California Sur; MéxicoFil: van de Putte, Anton. Royal Belgian Institute for Natural Sciences; BélgicaFil: Vandepitte, Leen. Flanders Marine Institute; BélgicaFil: Vanhoorne, Bart. Flanders Marine Institute; BélgicaFil: Vinci, Mateo. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Wambiji, Nina. Kenya Marine and Fisheries Research Institute; KeniaFil: Watts, David. CSIRO Oceans and Atmosphere; AustraliaFil: Klein Salas, Eduardo. Universidad Simon Bolivar; VenezuelaFil: Hernandez, Francisco. Flanders Marine Institute; Bélgic
    • 

    corecore