9 research outputs found

    Synthesis of Chitosan-Coated Silver Nanoparticle Bioconjugates and Their Antimicrobial Activity against Multidrug-Resistant Bacteria

    Get PDF
    The increase in multidrug-resistant bacteria represents a true challenge in the pharmaceutical and biomedical fields. For this reason, research on the development of new potential antibacterial strategies is essential. Here, we describe the development of a green system for the synthesis of silver nanoparticles (AgNPs) bioconjugated with chitosan. We optimized a Prunus cerasus leaf extract as a source of silver and its conversion to chitosan–silver bioconjugates (CH-AgNPs). The AgNPs and CH-AgNPs were characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FT-IR), ultraviolet–visible spectroscopy (UV–Vis), and zeta potential measurement (Z-potential). The cytotoxic activity of AgNPs and CH-AgNPs was assessed on Vero cells using the 3-[4.5-dimethylthiazol-2-yl]-2.5-diphenyltetrazolium bromide (MTT) cell proliferation assay. The antibacterial activity of AgNPs and CH-AgNPs synthesized using the green system was determined using the broth microdilution method. We evaluated the antimicrobial activity against standard ATCC and clinically isolated multisensitive (MS) and multidrug-resistant bacteria (MDR) Escherichia coli (E. coli), Enterococcus faecalis (E. faecalis), Klebsiella pneumonia (K. pneumoniae), and Staphylococcus aureus (S. aureus), using minimum inhibitory concentration (MIC) assays and the broth dilution method. The results of the antibacterial studies demonstrate that the silver chitosan bioconjugates were able to inhibit the growth of MDR strains more effectively than silver nanoparticles alone, with reduced cellular toxicity. These nanoparticles were stable in solution and had wide-spectrum antibacterial activity. The synthesis of silver and silver chitosan bioconjugates from Prunus cerasus leaf extracts may therefore serve as a simple, ecofriendly, noncytotoxic, economical, reliable, and safe method to produce antimicrobial compounds with low cytotoxicity

    Trophic condition of the volcanic Lake Nemi (Central Italy): environmental factors and planktonic communities in a changing environment

    Get PDF
    Lake Nemi is an interesting case of anthropogenic overexploitation which has caused its progressive environmental deterioration in the past decades. On this lake historical data about the trophic situation are available from 1975 to 1984. The research performed in 2002-03, about ten years after the diversion of urban waste waters, concerned a biological investigation on the phyto- and zooplanktonic communities, integrated with a physico-chemical analysis. The aims of our study are to evaluate the current water quality of the lake and compare it with the water quality observed in 1982-1983, when all biotic and abiotic components indicated a heavily compromised hypereutrophic condition. The water quality data and the comparison with a previous study point out that the biological aspects have partially changed (increased number of Cyanobacteria and phytoplanktonic taxa, particularly Clorophyta and Dinophyta; zooplankton composition changed at a species level, with the appearance of taxa associated to light trophic conditions), and the physico-chemical conditions significantly improved. The mean transparency, dissolved oxygen, nutrients and chlorophyll-a concentrations have all improved. Mean annual temperature at different depths increased, probably due to differences in climatic period and the lowering of the lake surface level (from 32.5 to 27.5 m in 1982 and 2002, respectively). Our results indicate a general improving trend in water quality is taking place since the diversion of waste water discharges. The present abiotic characteristics of the lake allow the phytoplankton to distribute itself in the whole epilimnion, and the zooplankton in the whole water column. A possible further improvement is hypothesized, and the constraints represented by excessive water level lowering and water temperature increasing are also discussed

    Expression and function of P-glycoprotein and absence of multidrug resistancerelated protein in rat and beige mouse peritoneal mast cells, Histochem

    No full text
    Summary To clarify the function of the multidrug transporter P-glycoprotein in mast cells we used the green fluorescent compound Bodipy-FL-verapamil, which is a substrate of P-glycoprotein. This compound is also transported by Multidrug Resistancerelated Protein (MRP), another membrane transport protein expressed in many tumour resistant cells as well as in normal cells. When rat peritoneal mast cells were incubated with Bodipy-verapamil, a rapid uptake of this compound was observed. Pretreatment with modulators of P-glycoprotein activity, such as verapamil and vinblastine, increased Bodipy-verapamil intracellular concentrations. In addition, Bodipy-verapamil efflux from these cells was rapid and also inhibited by verapamil and vinblastine. In contrast, no effect was observed when cells were treated with agents, such as probenecid and indomethacin, that are known inhibitors of MRP. Methylamine and monensin, substances that modify the pH values in the granules, were able to lower the concentrations of Bodipy-verapamil. Microscopical observations, conducted in both rat and beige mouse mast cells, demonstrated that the fluorochrome accumulated in the cytoplasmic secretory granules. RT-PCR performed on rat peritoneal mast cells revealed the presence of MDR1a and MDR1b mRNAs; on the contrary, MRP mRNA was not expressed. Mast cells were further treated with the fluorescent probe LysoSensor Blue, a weak base that becomes fluorescent when inside acidic organelles. This substance accumulated in mast cell granular structures and its fluorescence was reduced either by treatment with P-glycoprotein modulators or with agents that disrupt pH gradients. In conclusion, these data further confirm the presence of an active P-glycoprotein, but not of MRP, in rat peritoneal mast cells. These findings, coupled with previous ultrastructural data, lend further support to the assumption that this protein is located on the mast cell perigranular membrane. The functional role of P-glycoprotein in these cells is at present unclear, but a possible involvement in the transport of molecules from the granules to the cytosol can be hypothesized. Alternatively, this protein might be indirectly implicated in changes of pH values inside secretory granules

    4. Synthesis of Chitosan-Coated Silver Nanoparticle Bioconjugates and Their Antimicrobial Activity against Multidrug-Resistant Bacteria.

    Get PDF
    The increase in multidrug-resistant bacteria represents a true challenge in the pharmaceutical and biomedical fields. For this reason, research on the development of new potential antibacterial strategies is essential. Here, we describe the development of a green system for the synthesis of silver nanoparticles (AgNPs) bioconjugated with chitosan. We optimized a Prunus cerasus leaf extract as a source of silver and its conversion to chitosan–silver bioconjugates (CH-AgNPs). The AgNPs and CH-AgNPs were characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FT-IR), ultraviolet–visible spectroscopy (UV–Vis), and zeta potential measurement (Z-potential). The cytotoxic activity of AgNPs and CH-AgNPs was assessed on Vero cells using the 3-[4.5-dimethylthiazol-2-yl]-2.5-diphenyltetrazolium bromide (MTT) cell proliferation assay. The antibacterial activity of AgNPs and CH-AgNPs synthesized using the green system was determined using the broth microdilution method. We evaluated the antimicrobial activity against standard ATCC and clinically isolated multisensitive (MS) and multidrug-resistant bacteria (MDR) Escherichia coli (E. coli), Enterococcus faecalis (E. faecalis), Klebsiella pneumonia (K. pneumoniae), and Staphylococcus aureus (S. aureus), using minimum inhibitory concentration (MIC) assays and the broth dilution method. The results of the antibacterial studies demonstrate that the silver chitosan bioconjugates were able to inhibit the growth of MDR strains more effectively than silver nanoparticles alone, with reduced cellular toxicity. These nanoparticles were stable in solution and had wide-spectrum antibacterial activity. The synthesis of silver and silver chitosan bioconjugates from Prunus cerasus leaf extracts may therefore serve as a simple, ecofriendly, noncytotoxic, economical, reliable, and safe method to produce antimicrobial compounds with low cytotoxicity

    Nucleolin antagonist triggers autophagic cell death in human glioblastoma primary cells and decreased in vivo tumor growth in orthotopic brain tumor model

    No full text
    Nucleolin (NCL) is highly expressed in several types of cancer and represents an interesting therapeutic target. It is expressed at the plasma membrane of tumor cells, a property which is being used as a marker for several human cancer including glioblastoma. In this study we investigated targeting NCL as a new therapeutic strategy for the treatment of this pathology. To explore this possibility, we studied the effect of an antagonist of NCL, the multivalent pseudopeptide N6L using primary culture of human glioblastoma cells. In this system, N6L inhibits cell growth with different sensitivity depending to NCL localization. Cell cycle analysis indicated that N6L-induced growth reduction was due to a block of the G1/S transition with down-regulation of the expression of cyclin D1 and B2. By monitoring autophagy markers such as p62 and LC3II, we demonstrate that autophagy is enhanced after N6L treatment. In addition, N6L-treatment of mice bearing tumor decreased in vivo tumor growth in orthotopic brain tumor model and increase mice survival. The results obtained indicated an antiproliferative and pro-autophagic effect of N6L and point towards its possible use as adjuvant agent to the standard therapeutic protocols presently utilized for glioblastoma

    Diagnostic implications of genetic copy number variation in epilepsy plus

    No full text
    Objective Copy number variations (CNVs) represent a significant genetic risk for several neurodevelopmental disorders including epilepsy. As knowledge increases, reanalysis of existing data is essential. Reliable estimates of the contribution of CNVs to epilepsies from sizeable populations are not available. Methods We assembled a cohort of 1255 patients with preexisting array comparative genomic hybridization or single nucleotide polymorphism array based CNV data. All patients had epilepsy plus, defined as epilepsy with comorbid features, including intellectual disability, psychiatric symptoms, and other neurological and nonneurological features. CNV classification was conducted using a systematic filtering workflow adapted to epilepsy. Results Of 1097 patients remaining after genetic data quality control, 120 individuals (10.9%) carried at least one autosomal CNV classified as pathogenic; 19 individuals (1.7%) carried at least one autosomal CNV classified as possibly pathogenic. Eleven patients (1%) carried more than one (possibly) pathogenic CNV. We identified CNVs covering recently reported (HNRNPU) or emerging (RORB) epilepsy genes, and further delineated the phenotype associated with mutations of these genes. Additional novel epilepsy candidate genes emerge from our study. Comparing phenotypic features of pathogenic CNV carriers to those of noncarriers of pathogenic CNVs, we show that patients with nonneurological comorbidities, especially dysmorphism, were more likely to carry pathogenic CNVs (odds ratio = 4.09, confidence interval = 2.51-6.68; P = 2.34 x 10(-9)). Meta-analysis including data from published control groups showed that the presence or absence of epilepsy did not affect the detected frequency of CNVs. Significance The use of a specifically adapted workflow enabled identification of pathogenic autosomal CNVs in 10.9% of patients with epilepsy plus, which rose to 12.7% when we also considered possibly pathogenic CNVs. Our data indicate that epilepsy with comorbid features should be considered an indication for patients to be selected for a diagnostic algorithm including CNV detection. Collaborative large-scale CNV reanalysis leads to novel declaration of pathogenicity in unexplained cases and can promote discovery of promising candidate epilepsy genes

    Diagnostic implications of genetic copy number variation in epilepsy plus

    No full text
    OBJECTIVE: Copy number variations (CNVs) represent a significant genetic risk for several neurodevelopmental disorders including epilepsy. As knowledge increases, reanalysis of existing data is essential. Reliable estimates of the contribution of CNVs to epilepsies from sizeable populations are not available. METHODS: We assembled a cohort of 1255 patients with preexisting array comparative genomic hybridization or single nucleotide polymorphism array based CNV data. All patients had "epilepsy plus," defined as epilepsy with comorbid features, including intellectual disability, psychiatric symptoms, and other neurological and nonneurological features. CNV classification was conducted using a systematic filtering workflow adapted to epilepsy. RESULTS: Of 1097 patients remaining after genetic data quality control, 120 individuals (10.9%) carried at least one autosomal CNV classified as pathogenic; 19 individuals (1.7%) carried at least one autosomal CNV classified as possibly pathogenic. Eleven patients (1%) carried more than one (possibly) pathogenic CNV. We identified CNVs covering recently reported (HNRNPU) or emerging (RORB) epilepsy genes, and further delineated the phenotype associated with mutations of these genes. Additional novel epilepsy candidate genes emerge from our study. Comparing phenotypic features of pathogenic CNV carriers to those of noncarriers of pathogenic CNVs, we show that patients with nonneurological comorbidities, especially dysmorphism, were more likely to carry pathogenic CNVs (odds ratio = 4.09, confidence interval = 2.51-6.68; P = 2.34 × 10-9 ). Meta-analysis including data from published control groups showed that the presence or absence of epilepsy did not affect the detected frequency of CNVs. SIGNIFICANCE: The use of a specifically adapted workflow enabled identification of pathogenic autosomal CNVs in 10.9% of patients with epilepsy plus, which rose to 12.7% when we also considered possibly pathogenic CNVs. Our data indicate that epilepsy with comorbid features should be considered an indication for patients to be selected for a diagnostic algorithm including CNV detection. Collaborative large-scale CNV reanalysis leads to novel declaration of pathogenicity in unexplained cases and can promote discovery of promising candidate epilepsy genes.status: publishe

    Effects of pre‐operative isolation on postoperative pulmonary complications after elective surgery: an international prospective cohort study

    No full text
    We aimed to determine the impact of pre-operative isolation on postoperative pulmonary complications after elective surgery during the global SARS-CoV-2 pandemic. We performed an international prospective cohort study including patients undergoing elective surgery in October 2020. Isolation was defined as the period before surgery during which patients did not leave their house or receive visitors from outside their household. The primary outcome was postoperative pulmonary complications, adjusted in multivariable models for measured confounders. Pre-defined sub-group analyses were performed for the primary outcome. A total of 96,454 patients from 114 countries were included and overall, 26,948 (27.9%) patients isolated before surgery. Postoperative pulmonary complications were recorded in 1947 (2.0%) patients of which 227 (11.7%) were associated with SARS-CoV-2 infection. Patients who isolated pre-operatively were older, had more respiratory comorbidities and were more commonly from areas of high SARS-CoV-2 incidence and high-income countries. Although the overall rates of postoperative pulmonary complications were similar in those that isolated and those that did not (2.1% vs 2.0%, respectively), isolation was associated with higher rates of postoperative pulmonary complications after adjustment (adjusted OR 1.20, 95%CI 1.05-1.36, p = 0.005). Sensitivity analyses revealed no further differences when patients were categorised by: pre-operative testing; use of COVID-19-free pathways; or community SARS-CoV-2 prevalence. The rate of postoperative pulmonary complications increased with periods of isolation longer than 3 days, with an OR (95%CI) at 4-7 days or >= 8 days of 1.25 (1.04-1.48), p = 0.015 and 1.31 (1.11-1.55), p = 0.001, respectively. Isolation before elective surgery might be associated with a small but clinically important increased risk of postoperative pulmonary complications. Longer periods of isolation showed no reduction in the risk of postoperative pulmonary complications. These findings have significant implications for global provision of elective surgical care
    corecore