43 research outputs found

    Dietary procyanidins selectively modulate intestinal farnesoid X receptor-regulated gene expression to alter enterohepatic bile acid recirculation: elucidation of a novel mechanism to reduce triglyceridemia

    Get PDF
    Scope: Understanding the molecular basis by which dietary procyanidins modulate triglyceride and cholesterol homeostasis has important implications for the use of natural products in the treatment and prevention of cardiovascular disease. Methods: To determine whether modulation of bile acid (BA) homeostasis contributes to the hypotriglyceridemic action of grape seed procyanidin extract (GSPE) we examined the effect on genes regulating BA absorption, transport and synthesis in vitro, in Caco-2 cells, and in vivo, in wild type (C57BL/6) and farnesoid x receptor knockout (Fxr −/− ) mice. Results: We provide novel evidence demonstrating that GSPE is a naturally occurring geneselective bile acid receptor modulator (BARM). Mechanistically, GSPE down-regulates genes involved in intestinal BA absorption and transport in an Fxr-dependent manner, resulting in decreased enterohepatic BA recirculation. This correlates with increased fecal BA output, decreased serum triglyceride and cholesterol levels, increased hepatic cholesterol 7␣-hydroxylase (Cyp7a1), and decreased intestinal fibroblast growth factor 15 (Fgf15) expression. GSPE also increased hepatic HmgCoA reductase (Hmgcr) and synthase (Hmgcs1) expression, while concomitantly decreasing sterol regulatory element-binding protein 1c (Srebp1c). Conclusion: GSPE selectively regulates intestinal Fxr-target gene expression in vivo, and modulation of BA absorption and transport is a critical regulatory point for the consequential hypotriglyceridemic effects of GSPE

    Proceedings of Patient Reported Outcome Measure’s (PROMs) Conference Oxford 2017: Advances in Patient Reported Outcomes Research

    Get PDF
    A33-Effects of Out-of-Pocket (OOP) Payments and Financial Distress on Quality of Life (QoL) of People with Parkinson’s (PwP) and their Carer

    Pharmacogenetic meta-analysis of genome-wide association studies of LDL cholesterol response to statins

    Get PDF
    Statins effectively lower LDL cholesterol levels in large studies and the observed interindividual response variability may be partially explained by genetic variation. Here we perform a pharmacogenetic meta-analysis of genome-wide association studies (GWAS) in studies addressing the LDL cholesterol response to statins, including up to 18,596 statin-treated subjects. We validate the most promising signals in a further 22,318 statin recipients and identify two loci, SORT1/CELSR2/PSRC1 and SLCO1B1, not previously identified in GWAS. Moreover, we confirm the previously described associations with APOE and LPA. Our findings advance the understanding of the pharmacogenetic architecture of statin response

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Grape Seed Procyanidins and Cholestyramine Differentially Alter Bile Acid and Cholesterol Homeostatic Gene Expression in Mouse Intestine and Liver

    No full text
    Bile acid (BA) sequestrants, lipid-lowering agents, may be prescribed as a monotherapy or combination therapy to reduce the risk of coronary artery disease. Over 33% of adults in the United States use complementary and alternative medicine strategies, and we recently reported that grape seed procyanidin extract (GSPE) reduces enterohepatic BA recirculation as a means to reduce serum triglyceride (TG) levels. The current study was therefore designed to assess the effects on BA, cholesterol and TG homeostatic gene expression following co-administration with GSPE and the BA sequestrant, cholestyramine (CHY). Eight-week old male C57BL/6 mice were treated for 4 weeks with either a control or 2% CHY-supplemented diet, after which, they were administered vehicle or GSPE for 14 hours. Liver and intestines were harvested and gene expression was analyzed. BA, cholesterol, non-esterified fatty acid and TG levels were also analyzed in serum and feces. Results reveal that GSPE treatment alone, and co-administration with CHY, regulates BA, cholesterol and TG metabolism differently than CHY administration alone. Notably, GSPE decreased intestinal apical sodium-dependent bile acid transporter (Asbt) gene expression, while CHY significantly induced expression. Administration with GSPE or CHY robustly induced hepatic BA biosynthetic gene expression, especially cholesterol 7 alpha-hydroxylase (Cyp7a1), compared to control, while co-administration further enhanced expression. Treatment with CHY induced both intestinal and hepatic cholesterologenic gene expression, while co-administration with GSPE attenuated the CHY-induced increase in the liver but not intestine. CHY also induced hepatic lipogenic gene expression, which was attenuated by co-administration with GSPE. Consequently, a 25% decrease in serum TG levels was observed in the CHY+GSPE group, compared to the CHY group. Collectively, this study presents novel evidence demonstrating that GSPE provides additive and complementary efficacy as a lipid-lowering combination therapy in conjunction with CHY by attenuating hepatic cholesterol synthesis, enhancing BA biosynthesis and decreasing lipogenesis, which warrants further investigation

    Does coffee raise cholesterol?

    No full text

    Development of a Positive Psychology Well-Being Intervention in a Community Pharmacy Setting

    No full text
    Background: Community pharmacies are well-placed to deliver well-being interventions; however, to date, nothing has been produced specifically for this setting. The aim of this study was to develop a positive psychology intervention suitable for a community pharmacy setting with the goal of increasing the well-being of community members. Methods: Intervention development consisted of three steps: Step 1—identify the evidence-base and well-being model to underpin the basis of the intervention (Version 1); Step 2—model the intervention and gather user feedback to produce Version 2, and Step 3—revisit the evidence-base and refine the intervention to produce Version 3. Results: Findings from nine studies (seven RCTs, one cross-sectional, one N-1 design plus user feedback were applied to model a 6-week ‘Prescribing Happiness (P-Hap)’ intervention, underpinned by the PERMA model plus four other components from the positive psychology literature (Three Good Things, Utilising Your Signature Strengths in New Ways, Best Possible Selves and Character Strengths). A PERMA-based diary was designed to be completed 3 days a week as part of the intervention. Conclusions: This work is an important development which will direct the future implementation of interventions to support well-being in this novel setting. The next stage is to gain the perspectives of external stakeholders on the feasibility of delivering the P-Hap for its adoption into community pharmacy services in the future

    Expression of genes involved in basolateral intestinal cholesterol transport following treatments.

    No full text
    <p>Gene expression was analyzed for (A) <i>Abca1</i>, (B) <i>ApoA1</i>, and (C) <i>Ldlr</i>. Statistical differences are shown as: *p≀0.05, ** p≀0.01.</p

    Serum Biochemical analysis following treatments.

    No full text
    <p>Serum analysis was performed for (A) bile acids (BA), (B) cholesterol (CHOL), (C) triglyceride (TG), (D) non-esterified fatty acids (NEFA), (E) alanine aminotransferase (ALT), and (F) aspartate aminotransferase (AST). Normal upper and lower limits for ALT and AST are represented by the dashed lines in (E) and (F). Statistical differences are shown as: *p≀0.05, **p≀0.01, ***p≀0.001, **** p≀0.0001.</p
    corecore