27 research outputs found

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Étude structurale d'oligosides et de mimes peptidiques reconnus par des anticorps monoclonaux protecteurs dirigés contre l'antigène-O de Shighella flexneri 5a

    No full text
    PARIS-BIUSJ-Thèses (751052125) / SudocPARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF

    Synthesis and NMR study of a linear pentasaccharide fragment of the Shigella Flexneri 5a O-specific polysaccharide

    No full text
    International audienceA convergent chemical synthesis of the methyl glycoside of the linear epitope α-d-Glcp-(1→3)-α-l-Rhap-(1→3)-α-l-Rhap-(1→3)-β-d-GlcNAcp-(1→2)-α-l-Rhap (EBCDA) corresponding to the ramification of the O-antigen of Shigella flexneri serotype 5a is described. The strategy relies on the preparation of a key EB trichloroacetimidate donor and that of an appropriate CDA trisaccharide acceptor. Trichloroacetimidate chemistry was used for the construction of all glycosidic linkages except that of DA, where a bromide donor was preferred. In depth analysis of the pentasaccharide EBCDA 1H and 13C NMR spectra shows that its conformation approaches that of the corresponding fragment in the native polysaccharide.A convergent synthesis of pentasaccharide 1 is described. NMR analysis shows that its conformation approaches that of the related fragment in the native polysaccharide

    Antigen sparing and cross-reactive immunity with an adjuvanted rH5N1 prototype pandemic influenza vaccine: a randomised controlled trial

    No full text
    Background Antigen sparing is regarded as crucial for pandemic vaccine development because worldwide influenza vaccine production capacity is limited. Adjuvantation is an important antigen-sparing strategy. We assessed the safety and immunogenicity of a recombinant H5N1 split-virion vaccine formulated with a proprietary adjuvant system and investigated whether it can induce cross-reactive immunity. Methods Two doses of an inactivated split A/Vietnam/1194/2004 NIBRG-14 (recombinant H5N1 engineered by reverse genetics) vaccine were administered 21 days apart to eight groups of 50 volunteers aged 18-60 years. We studied four antigen doses (3.8 mu g, 7.5 mu g, 15 mu g, and 30 mu g haemagglutinin) given with or without adjuvant. Blood samples were collected to analyse humoral immune response. Adverse events were recorded up through study day 51. Safety analyses were of the whole vaccinated cohort and immunogenicity analyses per protocol. This trial is registered with the ClinicalTrials.gov, number NCT00309634. Findings All eight vaccine formulations had a good safety profile. No serious adverse events were reported. The adjuvanted vaccines induced more injection-site symptoms and general symptoms than did the non-adjuvanted vaccines, but most were mild to moderate in intensity and transient in nature. The adjuvanted formulations were significantly more immunogenic than the non-adjuvanted formulations at all antigen doses. At the lowest antigenic dose (3.8 mu g), immune responses for the adjuvanted vaccine against the recombinant homologous vaccine strain (A/Vietnam/1194/2004 NIBRG-14, clade 1) met or exceeded all US Food and Drug Administration and European Union licensure criteria. Furthermore, 37 of 48 (77%) participants receiving 3.8 mu g of the adjuvanted vaccine seroconverted for neutralising antibodies against a strain derived by reverse genetics from a drifted H5N1 isolate (A/Indonesia/5/2005, clade 2). Interpretation Adjuvantation conferred significant antigen sparing that could increase the production capacity of pandemic influenza vaccine. Moreover, the cross-clade neutralising antibody responses recorded imply that such a vaccine could be deployed for immunisation before a pandemic

    Targeting RNA:protein interactions with an integrative approach leads to the identification of potent YBX1 inhibitors

    No full text
    International audienceRNA-protein interactions (RPIs) are promising targets for developing new molecules of therapeutic interest. Nevertheless, challenges arise from the lack of methods and feedback between computational and experimental techniques during the drug discovery process. Here, we tackle these challenges by developing a drug screening approach that integrates chemical, structural and cellular data from both advanced computational techniques and a method to score RPIs in cells for the development of small RPI inhibitors; and we demonstrate its robustness by targeting Y-box binding protein 1 (YB-1), a messenger RNA-binding protein involved in cancer progression and resistance to chemotherapy. This approach led to the identification of 22 hits validated by molecular dynamics (MD) simulations and nuclear magnetic resonance (NMR) spectroscopy of which 11 were found to significantly interfere with the binding of messenger RNA (mRNA) to YB-1 in cells. One of our leads is an FDA-approved poly(ADP-ribose) polymerase 1 (PARP-1) inhibitor. This work shows the potential of our integrative approach and paves the way for the rational development of RPI inhibitors

    T cell developmental arrest in former premature infants increases risk of respiratory morbidity later in infancy

    No full text
    The inverse relationship between gestational age at birth and postviral respiratory morbidity suggests that infants born preterm (PT) may miss a critical developmental window of T cell maturation. Despite a continued increase in younger PT survivors with respiratory complications, we have limited understanding of normal human fetal T cell maturation, how ex utero development in premature infants may interrupt normal T cell development, and whether T cell development has an effect on infant outcomes. In our longitudinal cohort of 157 infants born between 23 and 42 weeks of gestation, we identified differences in T cells present at birth that were dependent on gestational age and differences in postnatal T cell development that predicted respiratory outcome at 1 year of age. We show that naive CD4+ T cells shift from a CD31-TNF-α+ bias in mid gestation to a CD31+IL-8+ predominance by term gestation. Former PT infants discharged with CD31+IL8+CD4+ T cells below a range similar to that of full-term born infants were at an over 3.5-fold higher risk for respiratory complications after NICU discharge. This study is the first to our knowledge to identify a pattern of normal functional T cell development in later gestation and to associate abnormal T cell development with health outcomes in infants
    corecore