156 research outputs found

    How VASP enhances actin-based motility

    Get PDF
    The function of vasodilator-stimulated phosphoprotein (VASP) in motility is analyzed using a biomimetic motility assay in which ActA-coated microspheres propel themselves in a medium containing actin, the Arp2/3 complex, and three regulatory proteins in the absence or presence of VASP. Propulsion is linked to cycles of filament barbed end attachment-branching-detachment-growth in which the ActA-activated Arp2/3 complex incorporates at the junctions of branched filaments. VASP increases the velocity of beads. VASP increases branch spacing of filaments in the actin tail, as it does in lamellipodia in living cells. The effect of VASP on branch spacing of Arp2/3-induced branched actin arrays is opposed to the effect of capping proteins. However, VASP does not compete with capping proteins for binding barbed ends of actin filaments. VASP enhances branched actin polymerization only when ActA is immobilized on beads or on Listeria. VASP increases the rate of dissociation of the branch junction from immobilized ActA, which is the rate-limiting step in the catalytic cycle of site-directed filament branching

    A biomimetic motility assay provides insight into the mechanism of actin-based motility

    Get PDF
    Abiomimetic motility assay is used to analyze the mechanism of force production by site-directed polymerization of actin. Polystyrene microspheres, functionalized in a controlled fashion by the N-WASP protein, the ubiquitous activator of Arp2/3 complex, undergo actin-based propulsion in a medium that consists of five pure proteins. We have analyzed the dependence of velocity on N-WASP surface density, on the concentration of capping protein, and on external force. Movement was not slowed down by increasing the diameter of the beads (0.2 to 3 μm) nor by increasing the viscosity of the medium by 105-fold. This important result shows that forces due to actin polymerization are balanced by internal forces due to transient attachment of filament ends at the surface. These forces are greater than the viscous drag. Using Alexa®488-labeled Arp2/3, we show that Arp2/3 is incorporated in the actin tail like G-actin by barbed end branching of filaments at the bead surface, not by side branching, and that filaments are more densely branched upon increasing gelsolin concentration. These data support models in which the rates of filament branching and capping control velocity, and autocatalytic branching of filament ends, rather than filament nucleation, occurs at the particle surface

    The interaction between lipid derivatives of colchicine and tubulin: Consequences of the interaction of the alkaloid with lipid membranes

    Get PDF
    AbstractColchicine is a potent antimitotic poison which is well known to prevent microtubule assembly by binding tubulin very tightly. Colchicine also possesses anti-inflammatory properties which are not well understood yet. Here we show that colchicine tightly interacts with lipid layers. The physical and biological properties of three different lipid derivatives of colchicine are investigated parallel to those of membrane lipids in the presence of colchicine. Upon insertion in the fatty alkyl chains, colchicine rigidifies the lipid monolayers in a fluid phase and fluidifies rigid monolayers. Similarly X-ray diffraction data show that lecithin–water phases are destabilized by colchicine. In addition, an unexpectedly drastic enhancement of the photoisomerization rate of colchicine into lumicolchicine in the lipid environment is observed and further supports insertion of the alkaloid in membranes. Finally the interaction of colchicine with lipids makes the drug inaccessible to tubulin. The possible in vivo significance of these results is discussed
    • …
    corecore