257 research outputs found

    Etude des mécanismes d'insertion/désinsertion des cations alcalins (Li+/Na+) au sein de la structure olivine FePO4 pour accumulateurs Li-ion et Na-ion

    No full text
    As part of the development of Na-ion technology, NaFePO4 compound, chemical equivalent of theattractive LiFePO4 material, would be a promising option facing possible lithium shortage. However,olivine-type LiFePO4 and NaFePO4 display different structural and electrochemical behaviors duringcationic insertion. This thesis presents an analysis of the (de)insertion mechanisms of Li+ and Na+ ionswithin olivine-type FePO4 by chemical and electrochemical means. Samples of LiFePO4 weresynthesized by two different methods (hydrothermal and precipitation), then chemically delithiated bydifferent processes. In a first step, structural analysis (XRD) associated with nuclear analyses enabledfollowing the reaction kinetics. We have pointed out that the presence of grain boundaries, resultingfrom the heat treatment, strongly limits the delithiation kinetics. The analysis of the evolution of thecoherency domains enabled us to propose an original "Shrinking Core" type delithiation mechanismwith a core of LiFePO4, observed by HRTEM and STEM-EELS. In a second step, in order to comparechemical and electrochemical mechanisms, insertion and cyclability of Li+ and Na+ were characterizedin lithium and sodium half-cells. Although the electrochemical signature of LiFePO4 and NaFePO4materials is different, the performances in terms of restored capacity or power capability are similar.Finally, electrochemical insertion of Li+ and Na+ in a powder comprising structural defects wascharacterized by operando XRD, during a charge / discharge cycle performed at low rate. Theseanalyses revealed that the cationic co-insertion takes place via a solid solution LixNayFePO4(0<x+y<1).Dans le cadre du développement des technologies Na-ion, le composé NaFePO4, équivalent chimiquedu matériau très attractif LiFePO4, représente une alternative intéressante aux problèmes deressourcement du lithium. Toutefois, les composés LiFePO4 et NaFePO4 de structure olivineprésentent des divergences de comportement structural et électrochimique lors de l'insertioncationique. Ce travail présente une analyse des mécanismes de (dés)insertion des ions Li+ et Na+ ausein de la phase FePO4 par voie chimique et électrochimique. Les échantillons de LiFePO4 ont étésynthétisés par deux méthodes différentes (hydrothermale et précipitation), puis délithiéschimiquement via différents procédés. Dans un premier temps, les analyses structurales (DRX)associées aux analyses nucléaires ont permis d'effectuer un suivi de la cinétique de réaction. Nousavons montré que la présence de joints de grains, issus du traitement thermique effectué, limitefortement la vitesse de délithiation. L'analyse de l’évolution des domaines de cohérences a permis deproposer un mécanisme de délithiation original de type "Coeur-Coquille" avec un coeur de LiFePO4,confirmé par HRTEM et STEM-EELS. Dans un deuxième temps, afin de comparer les mécanismes dedélithiation chimique et électrochimique, l’insertion et la cyclabilité des ions Li+ et Na+ ont étécaractérisées en demi-cellules lithium et sodium. Bien que la signature électrochimique des matériauxLiFePO4 et NaFePO4 soit différente, les performances en termes de capacité restituée ou de tenue enpuissance s'avèrent similaires. Enfin, l'insertion électrochimique des ions Li+ et Na+ au sein d'unepoudre comportant des défauts structuraux a été caractérisée par DRX Operando durant un cycle decharge / décharge effectué à régime lent. Ces analyses ont révélées que la co-insertion cationiques'effectue via une solution solide de type LixNayFePO4 (0<x+y<1)

    Etude des mécanismes d'insertion/désinsertion des cations alcalins (Li+/Na+) au sein de la structure olivine FePO4 pour accumulateurs Li-ion et Na-ion

    Get PDF
    As part of the development of Na-ion technology, NaFePO4 compound, chemical equivalent of theattractive LiFePO4 material, would be a promising option facing possible lithium shortage. However,olivine-type LiFePO4 and NaFePO4 display different structural and electrochemical behaviors duringcationic insertion. This thesis presents an analysis of the (de)insertion mechanisms of Li+ and Na+ ionswithin olivine-type FePO4 by chemical and electrochemical means. Samples of LiFePO4 weresynthesized by two different methods (hydrothermal and precipitation), then chemically delithiated bydifferent processes. In a first step, structural analysis (XRD) associated with nuclear analyses enabledfollowing the reaction kinetics. We have pointed out that the presence of grain boundaries, resultingfrom the heat treatment, strongly limits the delithiation kinetics. The analysis of the evolution of thecoherency domains enabled us to propose an original "Shrinking Core" type delithiation mechanismwith a core of LiFePO4, observed by HRTEM and STEM-EELS. In a second step, in order to comparechemical and electrochemical mechanisms, insertion and cyclability of Li+ and Na+ were characterizedin lithium and sodium half-cells. Although the electrochemical signature of LiFePO4 and NaFePO4materials is different, the performances in terms of restored capacity or power capability are similar.Finally, electrochemical insertion of Li+ and Na+ in a powder comprising structural defects wascharacterized by operando XRD, during a charge / discharge cycle performed at low rate. Theseanalyses revealed that the cationic co-insertion takes place via a solid solution LixNayFePO4(0<x+y<1).Dans le cadre du développement des technologies Na-ion, le composé NaFePO4, équivalent chimiquedu matériau très attractif LiFePO4, représente une alternative intéressante aux problèmes deressourcement du lithium. Toutefois, les composés LiFePO4 et NaFePO4 de structure olivineprésentent des divergences de comportement structural et électrochimique lors de l'insertioncationique. Ce travail présente une analyse des mécanismes de (dés)insertion des ions Li+ et Na+ ausein de la phase FePO4 par voie chimique et électrochimique. Les échantillons de LiFePO4 ont étésynthétisés par deux méthodes différentes (hydrothermale et précipitation), puis délithiéschimiquement via différents procédés. Dans un premier temps, les analyses structurales (DRX)associées aux analyses nucléaires ont permis d'effectuer un suivi de la cinétique de réaction. Nousavons montré que la présence de joints de grains, issus du traitement thermique effectué, limitefortement la vitesse de délithiation. L'analyse de l’évolution des domaines de cohérences a permis deproposer un mécanisme de délithiation original de type "Coeur-Coquille" avec un coeur de LiFePO4,confirmé par HRTEM et STEM-EELS. Dans un deuxième temps, afin de comparer les mécanismes dedélithiation chimique et électrochimique, l’insertion et la cyclabilité des ions Li+ et Na+ ont étécaractérisées en demi-cellules lithium et sodium. Bien que la signature électrochimique des matériauxLiFePO4 et NaFePO4 soit différente, les performances en termes de capacité restituée ou de tenue enpuissance s'avèrent similaires. Enfin, l'insertion électrochimique des ions Li+ et Na+ au sein d'unepoudre comportant des défauts structuraux a été caractérisée par DRX Operando durant un cycle decharge / décharge effectué à régime lent. Ces analyses ont révélées que la co-insertion cationiques'effectue via une solution solide de type LixNayFePO4 (0<x+y<1)

    The Quest for Meaning Around Self-Injurious and Suicidal Acts: A Qualitative Study Among Adolescent Girls

    Get PDF
    Introduction: Suicide and non-suicidal self-injury (NSSI) are major problems in adolescent psychiatry and share numerous clinical characteristics. The principal objective of this study is to describe the subjective experience of adolescent girls and young women who present NSSI and/or suicidal behaviors and to determine the common aspects and the specificities of each experience.Method: This exploratory study is based on a procedure that is qualitative, phenomenological, and inductive. The data were collected from two semi-structured interviews each of 18 girls and young women aged 12–21 years, who were receiving care from a psychiatrist specializing in adolescents and who at least once had harmed themselves by NSSI or attempted suicide, or both. The thematic data analysis was performed by applying the methods of interpretative phenomenological analysis.Results: The results are described around four superordinate themes: relationships with the self, with others/otherness, with the body, and with death; they are then subdivided into 13 themes. Several themes appeared common to both types of behavior, especially the relational dimension of self-harming acts. The process of separation-individuation seems complex for these youth.Conclusion: The results underline the relational aspects of the self-harming behavior (NSSI or suicidal) among adolescent girls. These aspects also appear to be expressed in the family sphere, the social sphere, in contact with peers, and also at a societal level when the community no longer addresses adolescents' difficulties. When the process of subjectification does not appear to reach completion, self-aggressive behavior is seen as an ultimate attempt to regain a feeling of autonomy

    GIS methodology and case study regarding assessment of the solar potential at territorial level: PV or thermal?

    Get PDF
    This paper presents a GIS-based methodology for assessing solar photovoltaic (PV) and solar thermal potentials in urban environment. The consideration of spatial and temporal dimensions of energy resource and demand allows, for two different territories of the Geneva region, to determine the suitable building roof areas for solar installations, the solar irradiance on these areas and, finally, the electrical and/or thermal energy potentials related to the demand. Results show that the choice of combining PV and solar thermal for domestic hot water (DHW) is relevant in both territories. Actually, the installation of properly sized solar thermal collectors doesn’t decrease much the solar PV potential, while allowing significant thermal production. However, solar collectors for combined DHW and space heating (SH) require a much larger surface and, therefore, have a more important influence on the PV potential.

    Hydrodynamic Interaction between an Accretion Flow and a Strong Wind around a Black Hole

    Get PDF
    In 2015, space heating and domestic hot water production accounted for around 40% of the Swiss final energy consumption. Reaching the goals of the 2050 energy strategy will require significantly reducing this share despite the growing building stock. Renewables are numerous but subject to spatial–temporal constraints. Territorial planning of energy distribution systems enabling the integration of renewables requires having a spatial–temporal characterization of the energy demand. This paper presents two bottom-up statistical extrapolation models for the estimation of the geo-dependent heat and electricity demand of the Swiss building stock. The heat demand is estimated by means of a statistical bottom-up model applied at the building level. At the municipality level, the electricity load curve is estimated by combining socio-economic indicators with average consumption per activity and/or electric device. This approach also allows to break down the estimated electricity demand according to activity type (e.g., households, various industry, and service activities) and appliance type (e.g., lighting, motor force, fridges). The total estimated aggregated demand is 94 TWh for heat and 58 TWh for electricity, which represent a deviation of 2.9 and 0.5%, respectively compared to the national energy consumption statistics. In addition, comparisons between estimated and measured electric load curves are done to validate the proposed approach. Finally, these models are used to build a geo-referred database of heat and electricity demand for the entire Swiss territory. As an application of the heat demand model, a realistic saving potential is estimated for the existing building stock; this potential could be achieved through by a deep retrofit program. One advantage of the statistical bottom-up model approach is that it allows to simulate a building stock that replicates the diversity of building demand. This point is important in order to correctly account for the mismatch between gross and net energy saving potential, often called performance gap. The impact of this performance gap is substantial since the estimated net saving potential is only half of the gross one

    Study of insertion/deinsertion mechanisms of alkaline cations (Li+,Na+) within FePO4 olivine structure for Li-ion and Na-ion batteries

    No full text
    Dans le cadre du développement des technologies Na-ion, le composé NaFePO4, équivalent chimiquedu matériau très attractif LiFePO4, représente une alternative intéressante aux problèmes deressourcement du lithium. Toutefois, les composés LiFePO4 et NaFePO4 de structure olivineprésentent des divergences de comportement structural et électrochimique lors de l'insertioncationique. Ce travail présente une analyse des mécanismes de (dés)insertion des ions Li+ et Na+ ausein de la phase FePO4 par voie chimique et électrochimique. Les échantillons de LiFePO4 ont étésynthétisés par deux méthodes différentes (hydrothermale et précipitation), puis délithiéschimiquement via différents procédés. Dans un premier temps, les analyses structurales (DRX)associées aux analyses nucléaires ont permis d'effectuer un suivi de la cinétique de réaction. Nousavons montré que la présence de joints de grains, issus du traitement thermique effectué, limitefortement la vitesse de délithiation. L'analyse de l’évolution des domaines de cohérences a permis deproposer un mécanisme de délithiation original de type "Coeur-Coquille" avec un coeur de LiFePO4,confirmé par HRTEM et STEM-EELS. Dans un deuxième temps, afin de comparer les mécanismes dedélithiation chimique et électrochimique, l’insertion et la cyclabilité des ions Li+ et Na+ ont étécaractérisées en demi-cellules lithium et sodium. Bien que la signature électrochimique des matériauxLiFePO4 et NaFePO4 soit différente, les performances en termes de capacité restituée ou de tenue enpuissance s'avèrent similaires. Enfin, l'insertion électrochimique des ions Li+ et Na+ au sein d'unepoudre comportant des défauts structuraux a été caractérisée par DRX Operando durant un cycle decharge / décharge effectué à régime lent. Ces analyses ont révélées que la co-insertion cationiques'effectue via une solution solide de type LixNayFePO4 (0<x+y<1).As part of the development of Na-ion technology, NaFePO4 compound, chemical equivalent of theattractive LiFePO4 material, would be a promising option facing possible lithium shortage. However,olivine-type LiFePO4 and NaFePO4 display different structural and electrochemical behaviors duringcationic insertion. This thesis presents an analysis of the (de)insertion mechanisms of Li+ and Na+ ionswithin olivine-type FePO4 by chemical and electrochemical means. Samples of LiFePO4 weresynthesized by two different methods (hydrothermal and precipitation), then chemically delithiated bydifferent processes. In a first step, structural analysis (XRD) associated with nuclear analyses enabledfollowing the reaction kinetics. We have pointed out that the presence of grain boundaries, resultingfrom the heat treatment, strongly limits the delithiation kinetics. The analysis of the evolution of thecoherency domains enabled us to propose an original "Shrinking Core" type delithiation mechanismwith a core of LiFePO4, observed by HRTEM and STEM-EELS. In a second step, in order to comparechemical and electrochemical mechanisms, insertion and cyclability of Li+ and Na+ were characterizedin lithium and sodium half-cells. Although the electrochemical signature of LiFePO4 and NaFePO4materials is different, the performances in terms of restored capacity or power capability are similar.Finally, electrochemical insertion of Li+ and Na+ in a powder comprising structural defects wascharacterized by operando XRD, during a charge / discharge cycle performed at low rate. Theseanalyses revealed that the cationic co-insertion takes place via a solid solution LixNayFePO4(0<x+y<1)

    Le&nbsp;retour&nbsp;d'expérience&nbsp;au&nbsp;service&nbsp;de&nbsp;l'innovation

    No full text
    Ce texte a été écrit à la demande du Décanat de la Faculté des Sciences de l'Université de Genève afin de préciser le concept de « retour d'expérience » appliqué aux systèmes énergétiques. Ce concept est à la base des travaux effectués par le Groupe&nbsp;Systèmes&nbsp;Energétiques depuis 1978

    Etude sur le subventionnement des capteurs solaires thermiques à Genève

    No full text

    La géothermie profonde et sa valorisation énergétique: potentiel et contraintes

    No full text
    L’exploitation de la chaleur du sous-sol profond à des fins énergétiques (chaleur et électricité) pourrait contribuer de manière significative à l’approvisionnement. Par sous-sol profond, on entend la zone située à une profondeur supérieure au km et spontanément dotée d’une température de plus de 40°C, avec un gain d’environ 30°C par km. Ainsi, au niveau du soc cristallin, on s’attend à une température approchant les 200°C. Pour extraire la chaleur du sous-sol, il faut y faire transiter de façon contrôlée de l’eau en grande quantité et c’est la chaleur contenue dans cette eau qui va être utilisée.</p
    corecore