68 research outputs found

    Por que estrógeno e raloxifeno melhoram a densidade mineral óssea?: mecanismo de ação do estrógeno e de um modulador seletivo do receptor de estrógeno (SERM) no osso

    Get PDF
    Estrogen deficiency is responsible for increased bone turnover in the postmenopausal period, and it can be prevented by estrogen replacement therapy. The way by which estrogen acts on bone cells is not fully understood and there are still many unsolved questions: (1) What is the target-cell of estrogen in bone? Estrogen receptor has been described in monocyte, osteoclast, bone marrow stromal cell and osteoblast, but it is still not clear what cell mediates the effect of estrogen in bone. (2) What are the mediators of estrogen action on bone? There is some controversy about the role of interleukin-6; most of the positive results were in animals, not in human; other cytokines are also involved, as tumoral necrosis factor and interleukin-1. (3) Is the anti-osteoclast effect of estrogen related to the apoptosis of osteoclast precursors? Some authors had already reported that estrogen increase apoptosis of osteoclasts precursors in animals, but it is not clear whether this effect is also present in humans. (4) What is the role of the bone marrow in osteoclastogenesis and in its inhibition by estrogen? Recently, it has been shown that stromal cells produce a membrane-associated factor (RANK-ligand) that stimulates osteoclast precursors, showing the importance of stromal cells in osteoclastogenesis and probably in the effect of estrogen in bone. (5) What is the transcription mechanism of estrogen action into the cell? NF-kappaB proteins may have an important role in post-menopausal osteoporosis, by regulating the secretion of cytokines involved on osteoclastogenesis. These questions on the mechanism of action of estrogens and also SERMs will be discussed in this review based on studies of literature and on recent studies of our group.A deficiência de estrógeno é responsável pelo aumento na remodelação óssea após a menopausa, cuja prevenção é feita pela terapia de reposição hormonal com estrógeno; porém, ainda não está esclarecido o mecanismo da ação anti-reabsortiva do estrógeno no osso e permanecem várias questões: (1) Qual a célula-alvo de ação do estrógeno no osso? O receptor de estrógeno já foi descrito em monócito, osteo-clasto, células do estroma da medula óssea e osteoblasto, mas é desconhecido o papel dessas células no efeito do estrógeno. (2) Quais os mediadores do efeito do estrógeno no osso? Os resultados da literatura são controversos quanto ao papel da interleucina-6, sendo a maioria dos resultados positivos em animais e não no homem. Outras citoquinas como interleucina-1 e fator de necrose tumoral parecem estar envolvidos. (3) O efeito anti-osteoclástico do estrógeno está relacionado à apoptose de precursores dos osteoclastos? Já foi relatado, em animais, que o estrógeno aumenta apoptose dos precursores dos osteoclastos, porém não é conhecido esse efeito no homem. (4) Qual o papel do estroma da medula óssea na osteoclastogênese e na sua inibição pelo estrógeno? Recentemente foi descrito um fator, produzido pelas células do estroma (RANK ligante) que induz a formação de osteoclasto, sugerindo a importância dessas células na osteoclastogênese e no efeito do estrógeno no osso. (5) Qual a via de transcrição intracelular do efeito do estrógeno? Proteínas NF-kapaB podem ter um papel significante na osteoporose pós-menopausa, podendo corresponder à via pelo qual o estrógeno regula a produção de citoquinas envolvidas na osteoclastogênese, porém ainda não está esclarecido este efeito. Estas questões, sobre o mecanismo de ação do estrógeno, como também dos SERMs serão discutidas nessa revisão.Universidade Federal de São Paulo (UNIFESP) Departamento de MedicinaHospital Lariboisière INSERM U349UNIFESP, Depto. de MedicinaSciEL

    Fracture risk and the use of a diuretic (indapamide sr) ± perindopril: a substudy of the Hypertension in the Very Elderly Trial (HYVET)

    Get PDF
    BACKGROUND: The Hypertension in the Very Elderly Trial (HYVET) is a placebo controlled double blind trial of treating hypertension with indapamide Slow Release (SR) ± perindopril in subjects over the age of 80 years. The primary endpoints are stroke (fatal and non fatal). In view of the fact that thiazide diuretics and indapamide reduce urinary calcium and may increase bone mineral density, a fracture sub study was designed to investigate whether or not the trial anti-hypertensive treatment will reduce the fracture rate in very elderly hypertensive subjects. METHODS: In the trial considerable care is taken to ascertain any fractures and to identify risk factors for fracture, such as falls, co-morbidity, drug treatment, smoking and drinking habits, levels of activity, biochemical abnormalities, cardiac irregularities, impaired cognitive function and symptoms of orthostatic hypotension. POTENTIAL RESULTS: The trial is expected to provide 10,500 patient years of follow-up. Given a fracture rate of 40/1000 patient years and a 20% difference in fracture rate, the power of the sub study is 58% to detect this difference at the 5% level of significance. The corresponding power for a reduction of 25% is 78%. CONCLUSION: The trial is well under way, expected to complete in 2009, and on target to detect, if present, the above differences in fracture rate

    Targeting Bone Alleviates Osteoarthritis in Osteopenic Mice and Modulates Cartilage Catabolism

    Get PDF
    Subchondral bone modifications occur early in the development of osteoarthritis (OA). The level of bone resorption might impact cartilage remodeling. We therefore assessed the in vivo and in vitro effects of targeting bone resorption in OA and cartilage metabolism.OA was induced by meniscectomy (MNX) in ovariectomized osteopenic mice (OP) treated with estradiol (E2), pamidronate (PAM), or phosphate buffered saline (PBS) for 6 weeks. We assessed the subchondral bone and cartilage structure and the expression of cartilage matrix proteases. To assess the involvement of bone soluble factors in cartilage metabolism, supernatant of human bone explants pre-treated with E2 or PAM were transferred to cartilage explants to assess proteoglycan release and aggrecan cleavage. OPG/RANKL mRNA expression was assessed in bone explants by real-time quantitative PCR. The role of osteoprotegerin (OPG) in the bone-cartilage crosstalk was tested using an OPG neutralizing antibody.Bone mineral density of OP mice and osteoclast number were restored by E2 and PAM (p<0.05). In OP mice, E2 and PAM decreased ADAMTS-4 and -5 expression, while only PAM markedly reduced OA compared to PBS (2.0±0.63 vs 5.2±0.95; p<0.05). OPG/RANKL mRNA was increased in human bone explants treated with both drugs (2.2-3.7-fold). Moreover, supernatants from bone explants cultured with E2 or PAM reduced aggrecan cleavage and cartilage proteoglycan release (73±8.0% and 80±22% of control, respectively, p<0.05). This effect was reversed with osteoprotegerin blockade.The inhibition of bone resorption by pamidronate in osteopenic mice alleviates the histological OA score with a reduction in the expression of aggrecanases. Bone soluble factors, such as osteoprotegerin, impact the cartilage response to catabolic factors. This study further highlights the importance of subchondral bone in the regulation of joint cartilage damage in OA

    Circulating biochemical markers of bone remodeling in uremic patients

    Get PDF
    Circulating biochemical markers of bone remodeling in uremic patients. Chronic renal failure is often associated with bone disorders, including secondary hyperparathyroidism, aluminum-related low-turnover bone disease, osteomalacia, adynamic osteopathy, osteoporosis, and skeletal β2-microglobulin amyloid deposits. In spite of the enormous progress made during the last few years in the search of noninvasive methods to assess bone metabolism, the distinction between high- and low-turnover bone diseases in these patients still frequently requires invasive and/or costly procedures such as bone biopsy after double tetracycline labeling, scintigraphic-scan studies, computed tomography, and densitometry. This review is focused on the diagnostic value of several new serum markers of bone metabolism, including bone-specific alkaline phosphatase (bAP), procollagen type I carboxy-terminal extension peptide (PICP), procollagen type I cross-linked carboxy-terminal telopeptide (ICTP), pyridinoline (PYD), osteocalcin, and tartrate-resistant acid phosphatase (TRAP) in patients with chronic renal failure. Most of the observations made by several groups converge to the conclusion that serum bAP is the most sensitive and specific marker to evaluate the degree of bone remodeling in uremic patients. Nonetheless, PYD and osteocalcin, in spite of their retention and accumulation in the serum of renal insufficient patients, are also excellent markers of bone turnover. The future generalized use of these markers, individually or in combination with other methods, will undoubtedly improve the diagnosis and the treatment of the complex renal osteodystrophy
    • …
    corecore