67 research outputs found

    « Trouver la paix au Moyen Âge » : les ambassades pour un consensus entre Grecs et Troyens chez Guido delle Colonne

    Get PDF
    Le mythe de Troie a connu au Moyen Âge un succès immense. Il ne s’agit pas, toutefois, de la tradition homérique, puisque l’Iliade n’est connue à l’époque que de nom, et ne fut lue en Occident qu’à partir de la Renaissance. Or, malgré cette ignorance pérenne du grec et de l’œuvre d’Homère, la « matière troyenne » est l’un des thèmes les plus traités dans la littérature du Moyen Âge. Notre texte, l’Historia destructionis Troiae de Guido delle Colonne, figure parmi les innombrables ouvrages méd..

    Heterogeneous nucleation of the primary phase in the rapid solidification of Al-4.5wt%Cu alloy droplet

    No full text
    International audienceThis paper reports on rapid solidification of Al-Cu alloys. A heterogeneous nucleation/growth model coupled with a thermal model of a falling droplet through a stagnant gas was developed. The primary undercooling as well as the number of nucleation points was compared with Al-Cu alloy droplets produced by Impulse Atomization (IA). Based on experimental results from Neutron Diffraction, secondary (eutectic) phases were obtained. Then, primary and secondary undercoolings were estimated using the metastable extensions of solidus and liquidus lines calculated by Thermo-Calc. Moreover, Synchrotron X-ray micro-tomography has been performed on Al-4.5wt%Cu droplets. The undercoolings are in good agreement. Results also evidence the presence of one nucleation point and are in agreement with the experimental observations. 1. Introduction Manufacturing of most metallic alloy products involves solidification at some stage. Mechanical properties of these products are generally related to their solidification microstructures. Depending on the final application of a product, a certain type of microstructure is more appropriate compared to another. For a product that requires directional properties, a microstructure of columnar grains is needed while isotropic properties are satisfied with an equiaxed structure. Generally, post-processing of the solidified materials is required to obtain the final product with desired properties. These post-solidification treatments are generally time-consuming and therefore increase the production cost without fully eliminating solidification related defects such as segregation. Therefore, it is important to understand all the dynamics involved in the formation of solidification microstructures in order to control the properties of the final products. As dendrites growth from an undercooled melt depends a great deal on the nucleation undercooling. Therefore, determination of undercooling and the resulting growth rate, recalescence, microsegregation/phase fraction and grain size is very important. Al-Cu alloys (4.5, 5, 10 and 17 wt% Cu) have been produced by IA and the last three compositions were analysed in our previous papers [1, 2]. IA is a single fluid atomization technique that is capable of producing droplets of controlled size having a relatively narrow distribution and a predictable cooling rate. The alloys (350 to 450g) were melted in a graphite crucible by means of an induction furnace and atomized at 850ºC in an almost oxygen free chamber (10ppm) under Nitrogen, Helium or Argon atmospheres. The atomized droplets rapidly solidify during their fall by losing heat to th

    Geometrical effects on filling dynamics in low pressure casting of light alloys

    Get PDF
    In aluminum low-pressure sand casting process, filling oscillations are observed when the metal front reaches a section change in a part. The effect of geometry on the filling oscillations is primary considered experimentally, including both mold cavity and filling system geometries. To highlight the geometric parameters impacting the oscillations, the pressurized melt flow is secondly studied numerically and analytically. A new analytical model of oscillation is developed to quantitatively predict the oscillations. It links the resulting filling velocity to both the low-pressure casting parameters and the mold cavity geometry. Considering oxides inclusion criterion from casting literature, new rules to avoid bi-films defects are recommended for making reliable low-pressure castings

    Experimental and numerical study of section restriction effects on filling behavior in low-pressure aluminum casting

    Get PDF
    The molten metal flow under low-pressure filling was investigated both experimentally and numerically inside sand molds with different cross sections and different pressure ramps. The proposed fluid dynamics simulation predicts quantitatively the observed filling oscillations. An analytical model is developed to link the over-height with the geometrical restriction and the pressure ramp. The calculated over-height is proportional to the ramp and non-linearly impacted by the section change as confirmed by the experimental results

    Evolution of the dendritic morphology with the solidification velocity in rapidly solidified Al- 4.5wt.%Cu droplets

    No full text
    International audienceThe microstructure morphology of Al-4.5wt.%Cu droplets formed by the Impulse Atomization technique is investigated. Three-dimensional reconstructions by synchrotron X-ray micro-tomography of several droplets reveal different morphologies in droplets of similar diameter and produced in the same batch. Moreover, microstructural features also indicate that the development of the dendrite arms occurs in some droplets along crystallographic axes instead of the usual directions observed in conventional casting for the same alloy. It has been observed that such an unusual growth direction of the dendrites is directly related to the solidification velocity. We underpin these results by carrying out comparisons with a solidification model. Predictions are used to discuss the change of dendrite growth direction, as well as the existence of a dendrite growth direction range for a given type of droplets. In addition, the effect of the droplet size and the cooling gas on the dendrite growth direction range observed experimentally is also investigated by using the model. 1. Introduction Rapid solidification techniques have been developed as they enable to obtain a wide variety of structures which cannot be formed under conventional solidification processes [1]. They differ by the way to form the liquid as a strip or a droplet and by the method of heat extraction. Atomization techniques are used to make metallic powders which are used for making a desired object by pressing or by sintering [2]. The liquid metal generated as a stream breaks up into droplets by Rayleigh-Plateau instability, which subsequently solidify in a much colder medium. In the Impulse Atomization (IA) technique the liquid is pushed through a nozzle plate to form the liquid streams [3]. In order to deepen the understanding of the microstructure formation in the droplets, synchrotron X-ray micro-tomography was carried out at the European Synchrotron Radiation Facility (ESRF, Grenoble, France). Three-dimensional reconstructions of a large number of droplets were obtained, enabling the inner microstructure of the droplets to be statistically analysed for the first time. In a previous paper, we showed that four distinct morphologies could be identified in droplets of the same size and from the same batch [4]. Such a range of morphologies can be linked to a range of solidification velocities for the droplets. Indeed, while Rappaz and co-workers highlighted the <100

    Dendrite growth morphologies in rapidly solidified Al-4.5wt.%Cu droplets

    No full text
    International audienceThe impulse atomization process developed at the University of Alberta (Canada) enables metallic powders to be solidified with controlled process parameters and improved properties. In order to investigate the microstructure morphologies in droplets of Al- 4.5wt.%Cu alloys, three-dimensional reconstructions of several droplets are obtained by using synchrotron X-ray micro-tomography, allowing a visualization of the inner microstructure in three dimensions. The analysis of the reconstructed volumes reveals that a wide range of morphology, from highly branched to "finger-bundle", can be obtained for different droplets of similar diameter and produced in the same batch. Unexpectedly for this alloy, microstructural features also indicate that the development of the dendrite arms (primary and of higher orders) occurs in most droplets along crystallographic axes, instead of the usual directions observed in conventional casting technologies

    Investigating surface roughness of ZE41 magnesium alloy cast by low-pressure sand casting process

    Get PDF
    The sand mold 3D printing technologies enable the manufacturing of molds with great dimensional accuracy. However, the roughness of as-cast components is higher when cast in a 3D printed mold rather than in a traditional sand mold. Coating the inner cavity is an efficient solution but can be costly and, in the narrowest cavities, not achievable. Finding a procedure to reduce the as-cast roughness without coating would ease the casting procedures. In the present work, surface analysis of ZE41 magnesium alloy is presented after being cast in 3D printed furan sand molds without coating using the low-pressure casting process. The molten metal temperature was measured during casting at different positions along the cast cavity. The as-cast surface roughness was correlated to the molten metal temperature and solid fraction at the time of contact against the sand mold surface

    An Orthotopic Model of Glioblastoma Is Resistant to Radiodynamic Therapy with 5-AminoLevulinic Acid

    Get PDF
    Radiosensitization of glioblastoma is a major ambition to increase the survival of this incurable cancer. The 5-aminolevulinic acid (5-ALA) is metabolized by the heme biosynthesis pathway. 5-ALA overload leads to the accumulation of the intermediate fluorescent metabolite protoporphyrin IX (PpIX) with a radiosensitization potential, never tested in a relevant model of glioblastoma. We used a patient-derived tumor cell line grafted orthotopically to create a brain tumor model. We evaluated tumor growth and tumor burden after different regimens of encephalic multifractionated radiation therapy with or without 5-ALA. A fractionation scheme of 5 × 2 Gy three times a week resulted in intermediate survival [48-62 days] compared to 0 Gy (15-24 days), 3 × 2 Gy (41-47 days) and, 5 × 3 Gy (73-83 days). Survival was correlated to tumor growth. Tumor growth and survival were similar after 5 × 2 Gy irradiations, regardless of 5-ALA treatment (RT group (53-67 days), RT+5-ALA group (40-74 days), HR = 1.57, p = 0.24). Spheroid growth and survival were diminished by radiotherapy in vitro, unchanged by 5-ALA pre-treatment, confirming the in vivo results. The analysis of two additional stem-like patient-derived cell lines confirmed the absence of radiosensitization by 5-ALA. Our study shows for the first time that in a preclinical tumor model relevant to human glioblastoma, treated as in clinical routine, 5-ALA administration, although leading to important accumulation of PpIX, does not potentiate radiotherapy

    Covichem: A biochemical severity risk score of COVID-19 upon hospital admission

    Get PDF
    Clinical and laboratory predictors of COVID-19 severity are now well described and combined to propose mortality or severity scores. However, they all necessitate saturable equipment such as scanners, or procedures difficult to implement such as blood gas measures. To provide an easy and fast COVID-19 severity risk score upon hospital admission, and keeping in mind the above limits, we sought for a scoring system needing limited invasive data such as a simple blood test and co-morbidity assessment by anamnesis. A retrospective study of 303 patients (203 from Bordeaux University hospital and an external independent cohort of 100 patients from Paris Pitié-Salpêtrière hospital) collected clinical and biochemical parameters at admission. Using stepwise model selection by Akaike Information Criterion (AIC), we built the severity score Covichem. Among 26 tested variables, 7: obesity, cardiovascular conditions, plasma sodium, albumin, ferritin, LDH and CK were the independent predictors of severity used in Covichem (accuracy 0.87, AUROC 0.91). Accuracy was 0.92 in the external validation cohort (89% sensitivity and 95% specificity). Covichem score could be useful as a rapid, costless and easy to implement severity assessment tool during acute COVID-19 pandemic waves

    3 years of liraglutide versus placebo for type 2 diabetes risk reduction and weight management in individuals with prediabetes: a randomised, double-blind trial

    Get PDF
    Background: Liraglutide 3·0 mg was shown to reduce bodyweight and improve glucose metabolism after the 56-week period of this trial, one of four trials in the SCALE programme. In the 3-year assessment of the SCALE Obesity and Prediabetes trial we aimed to evaluate the proportion of individuals with prediabetes who were diagnosed with type 2 diabetes. Methods: In this randomised, double-blind, placebo-controlled trial, adults with prediabetes and a body-mass index of at least 30 kg/m2, or at least 27 kg/m2 with comorbidities, were randomised 2:1, using a telephone or web-based system, to once-daily subcutaneous liraglutide 3·0 mg or matched placebo, as an adjunct to a reduced-calorie diet and increased physical activity. Time to diabetes onset by 160 weeks was the primary outcome, evaluated in all randomised treated individuals with at least one post-baseline assessment. The trial was conducted at 191 clinical research sites in 27 countries and is registered with ClinicalTrials.gov, number NCT01272219. Findings: The study ran between June 1, 2011, and March 2, 2015. We randomly assigned 2254 patients to receive liraglutide (n=1505) or placebo (n=749). 1128 (50%) participants completed the study up to week 160, after withdrawal of 714 (47%) participants in the liraglutide group and 412 (55%) participants in the placebo group. By week 160, 26 (2%) of 1472 individuals in the liraglutide group versus 46 (6%) of 738 in the placebo group were diagnosed with diabetes while on treatment. The mean time from randomisation to diagnosis was 99 (SD 47) weeks for the 26 individuals in the liraglutide group versus 87 (47) weeks for the 46 individuals in the placebo group. Taking the different diagnosis frequencies between the treatment groups into account, the time to onset of diabetes over 160 weeks among all randomised individuals was 2·7 times longer with liraglutide than with placebo (95% CI 1·9 to 3·9, p&lt;0·0001), corresponding with a hazard ratio of 0·21 (95% CI 0·13–0·34). Liraglutide induced greater weight loss than placebo at week 160 (–6·1 [SD 7·3] vs −1·9% [6·3]; estimated treatment difference −4·3%, 95% CI −4·9 to −3·7, p&lt;0·0001). Serious adverse events were reported by 227 (15%) of 1501 randomised treated individuals in the liraglutide group versus 96 (13%) of 747 individuals in the placebo group. Interpretation: In this trial, we provide results for 3 years of treatment, with the limitation that withdrawn individuals were not followed up after discontinuation. Liraglutide 3·0 mg might provide health benefits in terms of reduced risk of diabetes in individuals with obesity and prediabetes. Funding: Novo Nordisk, Denmark
    corecore