434 research outputs found

    Effect of Coenzyme Q10 and green tea on plasma and liver lipids, platelet aggregation, TBARS production and erythrocyte Na leak in simvastatin treated hypercholesterolmic rats

    Get PDF
    This study was conducted to investigate the hypocholesterolemic effect of simvastatin (30 mg/kg BW) and antioxidant effect of coenzyme Q10 (CoQ10, 15 mg/kg BW) or green tea (5%) on erythrocyte Na leak, platelet aggregation and TBARS production in hypercholesterolemic rats treated with statin. Food efficiency ratio (FER, ADG/ADFI) was decreased in statin group and increased in green tea group, and the difference between these two groups was significant (p<0.05). Plasma total cholesterol was somewhat increased in all groups with statin compared with control. Plasma triglyceride was decreased in statin group and increased in groups of CoQ10 and green tea, and the difference between groups of statin and green tea was significant (p<0.05). Liver total cholesterol was not different between the control and statin group, but was significantly decreased in the group with green tea compared with other groups (p<0.05). Liver triglyceride was decreased in groups of statin and green tea compared with the control, and the difference between groups of the control and green tea was significant (p<0.05). Platelet aggregation of both the initial slope and the maximum was not significantly different, but the group with green tea tended to be higher in initial slope and lower in the maximum. Intracellular Na of group with green tea was significantly higher than the control or statin group (p<0.05). Na leak in intact cells was significantly decreased in the statin group compared with the control (p<0.05). Na leak in AAPH treated cells was also significantly reduced in the statin group compared with groups of the control and CoQ10 (p<0.05). TBARS production in platelet rich plasma was significantly decreased in the groups with CoQ10 and green tea compared with the control and statin groups (p<0.05). TBARS of liver was significantly decreased in the group with green tea compared with the statin group (p<0.05). In the present study, even a high dose of statin did not show a cholesterol lowering effect, therefore depletion of CoQ10 following statin treatment in rats is not clear. More clinical studies are needed for therapeutic use of CoQ10 as an antioxidant in prevention of degenerative diseases independent of statin therapy

    Reactive oxygen species generation by bovine blood neutrophils with different CXCR1 (IL8RA) genotype following Interleukin-8 incubation

    Get PDF
    Background: Associations between polymorphisms in the bovine CXCR1 gene, encoding the chemokine (C-X-C motif) receptor 1 (IL8RA), and neutrophil traits and mastitis have been described. In the present study, blood neutrophils were isolated from 20 early lactating heifers with different CXCR1 genotype at position 735 or 980. The cells were incubated with different concentrations of recombinant bovine IL-8 (rbIL-8) for 2 or 6 h and stimulated with phorbol 12-myristate 13-acetate (PMA) or opsonized zymosan particles (OZP). Potential association between CXCR1 genotype and production of reactive oxygen species (ROS) was studied. Results: Although on single nucleotide polymorphisms (SNPs) may potentially affect CXCR1 function, SNPs c.735C > G and c.980A > G showed no association with ROS production with or without incubation of rbIL-8. Neutrophils incubated with rbIL-8 for 2 or 6 h showed higher PMA- and lower OZP-induced ROS production compared to control without rbIL-8. Conclusions: In the present study no association could be detected between superoxide production by isolated bovine neutrophils during early lactation and CXCR1 gene polymorphism. IL-8 showed to possess inhibitory effects on ROS generation in bovine neutrophils

    Hck contributes to bone homeostasis by controlling the recruitment of osteoclast precursors

    Get PDF
    ABSTRACT In osteoclasts, Src controls podosome organization and bone degradation, which leads to an osteopetrotic phenotype in src ۊ/ۊ mice. Since this phenotype was even more severe in src ۊ/ۊ hck ۊ/ۊ mice, we examined the individual contribution of Hck in bone homeostasis. Compared to wt mice, hck ۊ/ۊ mice exhibited an osteopetrotic phenotype characterized by an increased density of trabecular bone and decreased bone degradation, although osteoclastogenesis was not impaired. Podosome organization and matrix degradation were found to be defective in hck ۊ/ۊ osteoclast precursors (preosteoclast) but were normal in mature hck ۊ/ۊ osteoclasts, probably through compensation by Src, which was specifically overexpressed in mature osteoclasts. As a consequence of podosome defects, the 3-dimensional migration of hck ۊ/ۊ preosteoclasts was strongly affected in vitro. In vivo, this translated by altered bone homing of preosteoclasts in hck ۊ/ۊ mice: in metatarsals of 1-wk-old mice, when bone formation strongly depends on the recruitment of these cells, reduced numbers of osteoclasts and abnormal developing trabecular bone were observed. This phenotype was still detectable in adults. In summmary, Hck is one of the very few effectors of preosteoclast recruitment described to date and thereby plays a critical role in bone remodeling.-VĂ©rollet, C., Gallois, A., Dacquin, R., Lastrucci, C., Pandruvada, S. M. N., Ortega, N., Poincloux, R., Behar, A., Cougoule, C., Lowell, C., Al Saati, T., Jurdic, P., Maridonneau-Parini, I. Hck contributes to bone homeostasis by controlling the recruitment of osteoclast precursors. FASEB J. 27, 3608 -3618 (2013). www.fasebj.org Key Words: osteopetrosis ⅐ cell migration ⅐ podosomes ⅐ Src tyrosine kinases Bone is renewed continuously by a process known as bone remodeling. Bone remodeling is accomplished by 3 cell types: osteocytes, osteoblasts, and osteoclasts (OCs). Osteocytes are the mechanical sensors of bone that regulate osteoclast formation. Osteoblasts synthetize the matrix and promote its mineralization, while OCs are responsible for degradation of bones during bone development, homeostasis, and repair. The formation and degradation of bone are tightly balanced in both time and space. A dysregulation of this tight balance between bone formation and bone degradation may result either in loss of bone mass, such as in osteoporosis, or in contrast, in a progressive increase in bone mass, such as in osteopetrosis. Degrading OCs are large multinucleated giant cells formed by the differentiation and fusion of mononuclear monocyte lineage precursors after stimulation by receptor activator of nuclear factor -B ligand (RANKL) and macrophage colony-stimulationg factor (M-CSF) (1-3). They are characterized by high levels of cathepsin K and tartrate resistant acidic phosphatase (TRAP) activities, whic

    Oxidative stress and phosphatidylserine exposure in red cells from patients with sickle cell anaemia.

    Get PDF
    Phosphatidylserine (PS) exposure increases as red cells age, and is an important signal for the removal of senescent cells from the circulation. PS exposure is elevated in red cells from sickle cell anaemia (SCA) patients and is thought to enhance haemolysis and vaso-occlusion. Although precise conditions leading to its externalisation are unclear, high intracellular Ca2+ has been implicated. Red cells from SCA patients are also exposed to an increased oxidative challenge, and we postulated that this stimulates PS exposure, through increased Ca2+ levels. We tested four different ways of generating oxidative stress: hypoxanthine and xanthine oxidase, phenazine methosulphate, nitrite and tert-butyl hydroperoxide, together with thiol modification with N-ethylmaleimide (NEM), dithiothreitol and hypochlorous acid (HOCl), in red cells permeabilised to Ca2+ using bromo-A23187. Unexpectedly, our findings showed that the four oxidants significantly reduced Ca2+ -induced PS exposure (by 40-60%) with no appreciable effect on Ca2+ affinity. By contrast, NEM markedly increased PS exposure (by about 400%) and slightly but significantly increased the affinity for Ca2+ . Dithiothreitol modestly reduced PS exposure (by 25%) and HOCl had no effect. These findings emphasise the importance of thiol modification for PS exposure in sickle cells but suggest that increased oxidant stress alone is not important.We thank the British Heart Foundation for generous financial support (grant number 31966)

    Tuberculosis is associated with expansion of a motile, permissive and immunomodulatory CD16(+) monocyte population via the IL-10/STAT3 axis

    Get PDF
    The human CD14+ monocyte compartment is composed by two subsets based on CD16 expression. We previously reported that this compartment is perturbed in tuberculosis (TB) patients, as reflected by the expansion of CD16+ monocytes along with disease severity. Whether this unbalance is beneficial or detrimental to host defense remains to be elucidated. Here in the context of active TB, we demonstrate that human monocytes are predisposed to differentiate towards an anti-inflammatory (M2-like) macrophage activation program characterized by theCD16+CD163+MerTK+pSTAT3+ phenotype and functional properties such as enhanced protease-dependent motility, pathogen permissivity and immunomodulation. This process is dependent on STAT3 activation, and loss-of-function experiments point towards a detrimental role in host defense against TB. Importantly, we provide a critical correlation between the abundance of the CD16+CD163+MerTK+pSTAT3+ cells and the progression of the disease either at the local level in a non-human primate tuberculous granuloma context, or at the systemic level through the detection of the soluble form of CD163 in human sera. Collectively, this study argues for the pathogenic role of the CD16+CD163+MerTK+pSTAT3+ monocyte-to-macrophage differentiation program and its potential as a target for TB therapy,and promotes the detection of circulating CD163 as a potential biomarker for disease progression and monitoringof treatment efficacy.Fil: Lastrucci, Claire. Centre National de la Recherche Scientifique; FranciaFil: Bénard, Alan. Centre National de la Recherche Scientifique; FranciaFil: Balboa, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Pingris, Karine. Centre National de la Recherche Scientifique; FranciaFil: Souriant, Shanti. Centre National de la Recherche Scientifique; FranciaFil: Poincloux, Renaud. Centre National de la Recherche Scientifique; FranciaFil: Al Saati, Talal. Inserm; FranciaFil: Rasolofo, Voahangy. Pasteur Institute in Antananarivo; MadagascarFil: Gonzålez Montaner, Pablo. Gobierno de la Ciudad de Buenos Aires. Hospital de Infecciosas ; ArgentinaFil: Inwentarz, Sandra. Gobierno de la Ciudad de Buenos Aires. Hospital de Infecciosas ; ArgentinaFil: Moraña, Eduardo José. Gobierno de la Ciudad de Buenos Aires. Hospital de Infecciosas ; ArgentinaFil: Kondova, Ivanela. Biomedical Primate Research Centre; Países BajosFil: Verreck, Franck A. W.. Biomedical Primate Research Centre; Países BajosFil: Sasiain, María del Carmen. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Neyrolles, Olivier. Centre National de la Recherche Scientifique; FranciaFil: Maridonneau Parini, Isabel. Centre National de la Recherche Scientifique; FranciaFil: Lugo Villarino, Geanncarlo. Centre National de la Recherche Scientifique; FranciaFil: Cougoule, Celine. Centre National de la Recherche Scientifique; Franci
    • 

    corecore