829 research outputs found

    Simultaneous precise editing of multiple genes in human cells

    No full text
    Abstract. When double-strand breaks are introduced in a genome by CRISPR they are repaired either by non-homologous end joining (NHEJ), which often results i

    Effect of electrodeposition current density on the microstructure and magnetic properties of nickel-cobalt-molybdenum alloy powders

    Get PDF
    Nanostructured nickel-cobalt-molybdenum alloy powders were electrodeposited from an ammonium sulfate bath. The powders mostly consist of an amorphous phase and a very small amount of nanocrystals with an mean size of less than 3 nm. An increase in deposition current density increases the amorphous phase percentage, the density of chaotically distributed dislocations and internal microstrains in the powders, while decreasing the mean nanocrystal size. The temperature range over which the structural relaxation of the powders deposited at higher current densities occurs is shifted towards lower temperatures. A change in relative magnetic permeability during structural relaxation is higher in powders deposited at higher current densities. Powder crystallization takes place at temperatures above 700oC. The formation of the stable crystal structure causes a decrease in relative magnetic permeability

    Development of new material for the environmental-friendly energy generation processes

    Get PDF
    The aim of this study was to develop a new material which has high hydrogen storage capacity and hydrogen absorption/desorption rate. This material, which is based on cobalt powder onto which palladium was chemically deposited can be used in environmentally friendly energy generation processes, thus ensuring preventive protection of human health. Hydrogen absorption was investigated using differential scanning calorimetry (DSC) and by measuring hydrogen pressure under isothermal and non-isothermal conditions in a chamber containing either pure cobalt powder either cobalt powder onto which palladium was chemically deposited (Co-0.003 Pd). The mechanism of hydrogen absorption has been described. It was noticed that palladium catalyses hydrogen absorption by dissociating the adsorbed H2 molecules into H atoms more rapidly on its own atoms than on cobalt ones. The catalysis of dissociation of H2 molecules enabled hydrogen absorption into Co-0.003 Pd powder to occur at lower temperatures. The results of this study enable integration of technological and public health investigation in order to ensure preventive protection of human health through enviromental protection

    Interfacial Transition Zone in Mature Fiber-Reinforced Concretes

    Full text link
    [EN] The interfacial transition zone (ITZ) in concrete is the region of the cement paste that is disturbed by the presence of an aggregate or fiber. This work focuses on the ITZ around silica and dolomite grains and steel fibers. The analysis performed is based on: the macroscale properties of the specimens; petrographic analyses with polarized microscopy; and qualitative and quantitative SEM analyses. The following types of concrete were tested: standard quality (SQ); high-quality with steel fibers (PFRC); and ultra-high-performance fiber-reinforced concrete (UHPFRC). The most important parameters affecting ITZ are the properties of the disturbing elements and the mixture composition of the concrete. In PFRC, a differentiated zone of thickness 20 ¿m (787.40 ¿in.) was observed around a dolomite grain, showing a preferential growth of Ca-based compounds. In UHPFRC, SEM-EDS analysis revealed C-S-H of lower Ca/Si ratios in the proximity of fibers and aggregates.Roig-Flores, M.; Simicevic, F.; Maricic, A.; Serna Ros, P.; Horvat, M. (2018). Interfacial Transition Zone in Mature Fiber-Reinforced Concretes. ACI Materials Journal. 115(4):623-631. https://doi.org/10.14359/51702419623631115

    Effect of milling and annealing on microstructural, electrical and magnetic properties of electrodeposited Ni-11.3fe-1.4W alloy

    Get PDF
    A nanostructured Ni-11.3Fe-1.4W alloy deposit was obtained from an ammonium citrate bath at a current density of 600 mAcm -2. XRD analysis shows that the deposit contains an amorphous matrix having embedded nanocrystals of the FCC phase of the solid solution of Fe and W in Ni with the average crystal grain size of 8.8 nm. The deposit has a high internal microstrain value and a high minimum density of chaotically distributed dislocations. The effect of milling and annealing of the Ni-11.3Fe-1.4W alloy on electrical and magnetic properties was studied. Structural changes in the alloy take place during both annealing and milling. Upon deposition, the alloy was heated to 420 °C. Heating resulted in structural relaxation which induced a decrease in electrical resistivity and an increase in magnetic permeability of the alloy. Further heating of the alloy at temperatures higher than 420 °C led to crystallization which caused a reduction in both electrical resistivity and magnetic permeability. The milling of the alloy for up to 12 hours caused a certain degree of structural relaxation and crystallization of the alloy. The increase in crystal grain size up to 11 nm and the partial structural relaxation induced a decrease in electrical resistivity and an increase in magnetic permeability of the alloy. Heating the powders obtained by milling at 420 °C led to complete structural relaxation, reduced electrical resistivity, and increased magnetic permeability. During heating of the powders obtained by milling at temperatures above 420 °C, crystallization and a significant increase in crystal grain size occurred, leading to a reduction in both electrical resistivity and magnetic permeability. The best magnetic properties were exhibited by the alloys milled for 12 hours and annealed thereafter at 420 °C. In these alloys, crystal grains were found to have an optimum size, and complete relaxation took place, resulting in a maximum increase in magnetic permeability

    Primer Extension Capture: Targeted Sequence Retrieval from Heavily Degraded DNA Sources

    Get PDF
    We present a method of targeted DNA sequence retrieval from DNA sources which are heavily degraded and contaminated with microbial DNA, as is typical of ancient bones. The method greatly reduces sample destruction and sequencing demands relative to direct PCR or shotgun sequencing approaches. We used this method to reconstruct the complete mitochondrial DNA (mtDNA) genomes of five Neandertals from across their geographic range. The mtDNA genetic diversity of the late Neandertals was approximately three times lower than that of contemporary modern humans. Together with analyses of mtDNA protein evolution, these data suggest that the long-term effective population size of Neandertals was smaller than that of modern humans and extant great apes

    Structural basis for CD1d presentation of a sulfatide derived from myelin and its implications for autoimmunity

    Get PDF
    Sulfatide derived from the myelin stimulates a distinct population of CD1d-restricted natural killer T (NKT) cells. Cis-tetracosenoyl sulfatide is one of the immunodominant species in myelin as identified by proliferation, cytokine secretion, and CD1d tetramer staining. The crystal structure of mouse CD1d in complex with cis-tetracosenoyl sulfatide at 1.9 Å resolution reveals that the longer cis-tetracosenoyl fatty acid chain fully occupies the A′ pocket of the CD1d binding groove, whereas the sphingosine chain fills up the F′ pocket. A precise hydrogen bond network in the center of the binding groove orients and positions the ceramide backbone for insertion of the lipid tails in their respective pockets. The 3′-sulfated galactose headgroup is highly exposed for presentation to the T cell receptor and projects up and away from the binding pocket due to its β linkage, compared with the more intimate binding of the α-glactosyl ceramide headgroup to CD1d. These structure and binding data on sulfatide presentation by CD1d have important implications for the design of therapeutics that target T cells reactive for myelin glycolipids in autoimmune diseases of the central nervous system

    Temporal comparison of nonthermal flare emission and magnetic-flux change rates

    Full text link
    To test the standard flare model (CSHKP-model), we measured the magnetic-flux change rate in five flare events of different GOES classes using chromospheric/photospheric observations and compared its progression with observed nonthermal flare emission. We calculated the cumulated positive and negative magnetic flux participating in the reconnection process, as well as the total reconnection flux. Finally, we investigated the relations between the total reconnection flux, the GOES class of the events, and the linear velocity of the flare-associated CMEs. Using high-cadence H-alpha and TRACE 1600 A image time-series data and MDI/SOHO magnetograms, we measured the required observables (newly brightened flare area and magnetic-field strength inside this area). RHESSI and INTEGRAL hard X-ray time profiles in nonthermal energy bands were used as observable proxies for the flare-energy release rate. We detected strong temporal correlations between the derived magnetic-flux change rate and the observed nonthermal emission of all events. The cumulated positive and negative fluxes, with flux ratios of between 0.64 and 1.35, were almost equivalent to each other. Total reconnection fluxes ranged between 1.8 x 10^21 Mx for the weakest event (GOES class B9.5) and 15.5 x 10^21 Mx for the most energetic one (GOES class X17.2). The amount of magnetic flux participating in the reconnection process was higher in more energetic events than in weaker ones. Flares with more reconnection flux were associated with faster CMEs.Comment: 12 pages, 13 figure
    • …
    corecore