58 research outputs found

    Developmental seizures and mortality result from reducing GABAᴀ receptor α2-subunit interaction with collybistin

    Get PDF
    Fast inhibitory synaptic transmission is mediated by γ-aminobutyric acid type A receptors (GABAARs) that are enriched at functionally diverse synapses via mechanisms that remain unclear. Using isothermal titration calorimetry and complementary methods we demonstrate an exclusive low micromolar binding of collybistin to the α2-subunit of GABAARs. To explore the biological relevance of collybistin-α2-subunit selectivity, we generate mice with a mutation in the α2-subunit-collybistin binding region (Gabra2-1). The mutation results in loss of a distinct subset of inhibitory synapses and decreased amplitude of inhibitory synaptic currents. Gabra2–1 mice have a striking phenotype characterized by increased susceptibility to seizures and early mortality. Surviving Gabra2-1 mice show anxiety and elevations in electroencephalogram δ power, which are ameliorated by treatment with the α2/α3-selective positive modulator, AZD7325. Taken together, our results demonstrate an α2-subunit selective binding of collybistin, which plays a key role in patterned brain activity, particularly during development

    Association with Aurora-A controls N-MYC-dependent promoter escape and pause release of RNA polymerase II during the cell cycle

    Get PDF
    MYC proteins bind globally to active promoters and promote transcriptional elongation by RNA polymerase II (Pol II). To identify effector proteins that mediate this function, we performed mass spectrometry on N-MYC complexes in neuroblastoma cells. The analysis shows that N-MYC forms complexes with TFIIIC, TOP2A, and RAD21, a subunit of cohesin. N-MYC and TFIIIC bind to overlapping sites in thousands of Pol II promoters and intergenic regions. TFIIIC promotes association of RAD21 with N-MYC target sites and is required for N-MYC-dependent promoter escape and pause release of Pol II. Aurora-A competes with binding of TFIIIC and RAD21 to N-MYC in vitro and antagonizes association of TOP2A, TFIIIC, and RAD21 with N-MYC during S phase, blocking N-MYC-dependent release of Pol II from the promoter. Inhibition of Aurora-A in S phase restores RAD21 and TFIIIC binding to chromatin and partially restores N-MYC-dependent transcriptional elongation. We propose that complex formation with Aurora-A controls N-MYC function during the cell cycle

    Pin1-dependent signaling negatively affects GABAergic transmission by modulating neuroligin2/gephyrin interaction

    Get PDF
    The cell adhesion molecule Neuroligin2 (NL2) is localized selectively at GABAergic synapses, where it interacts with the scaffolding protein gephyrin in the post-synaptic density. However, the role of this interaction for formation and plasticity of GABAergic synapses is unclear. Here, we demonstrate that endogenous NL2 undergoes proline-directed phosphorylation at its unique S714-P consensus site, leading to the recruitment of the peptidyl-prolyl cis-trans isomerase Pin1. This signalling cascade negatively regulates NL2' s ability to interact with gephyrin at GABAergic post-synaptic sites. As a consequence, enhanced accumulation of NL2, gephyrin and GABA A receptors was detected at GABAergic synapses in the hippocampus of Pin1-knockout mice (Pin1\ufffd/\ufffd) associated with an increase in amplitude of spontaneous GABA A -mediated post-synaptic currents. Our results suggest that Pin1-dependent signalling represents a mechanism to modulate GABAergic transmission by regulating NL2/gephyrin interaction. \ufffd 2014 Macmillan Publishers Limited. All rights reserved

    Loss of the interferon-Îł-inducible regulatory immunity-related GTPase (IRG), Irgm1, causes activation of effector IRG proteins on lysosomes, damaging lysosomal function and predicting the dramatic susceptibility of Irgm1-deficient mice to infection

    Get PDF
    The interferon-Îł (IFN-Îł)-inducible immunity-related GTPase (IRG), Irgm1, plays an essential role in restraining activation of the IRG pathogen resistance system. However, the loss of Irgm1 in mice also causes a dramatic but unexplained susceptibility phenotype upon infection with a variety of pathogens, including many not normally controlled by the IRG system. This phenotype is associated with lymphopenia, hemopoietic collapse, and death of the mouse.Deutscher Akademischer Austausch Dienst (DAAD); International Graduate School in Development Health and Disease (IGS-DHD); Deutsche For-schungsgemeinschaft (SFBs 635, 670, 680); Max-Planck-Gesellschaft (Max Planck Fellowship)

    Cell-Surface Marker Signatures for the Isolation of Neural Stem Cells, Glia and Neurons Derived from Human Pluripotent Stem Cells

    Get PDF
    Neural induction of human pluripotent stem cells often yields heterogeneous cell populations that can hamper quantitative and comparative analyses. There is a need for improved differentiation and enrichment procedures that generate highly pure populations of neural stem cells (NSC), glia and neurons. One way to address this problem is to identify cell-surface signatures that enable the isolation of these cell types from heterogeneous cell populations by fluorescence activated cell sorting (FACS).We performed an unbiased FACS- and image-based immunophenotyping analysis using 190 antibodies to cell surface markers on naĂŻve human embryonic stem cells (hESC) and cell derivatives from neural differentiation cultures. From this analysis we identified prospective cell surface signatures for the isolation of NSC, glia and neurons. We isolated a population of NSC that was CD184(+)/CD271(-)/CD44(-)/CD24(+) from neural induction cultures of hESC and human induced pluripotent stem cells (hiPSC). Sorted NSC could be propagated for many passages and could differentiate to mixed cultures of neurons and glia in vitro and in vivo. A population of neurons that was CD184(-)/CD44(-)/CD15(LOW)/CD24(+) and a population of glia that was CD184(+)/CD44(+) were subsequently purified from cultures of differentiating NSC. Purified neurons were viable, expressed mature and subtype-specific neuronal markers, and could fire action potentials. Purified glia were mitotic and could mature to GFAP-expressing astrocytes in vitro and in vivo.These findings illustrate the utility of immunophenotyping screens for the identification of cell surface signatures of neural cells derived from human pluripotent stem cells. These signatures can be used for isolating highly pure populations of viable NSC, glia and neurons by FACS. The methods described here will enable downstream studies that require consistent and defined neural cell populations

    Nutritional psychiatry research: an emerging discipline and its intersection with global urbanization, environmental challenges and the evolutionary mismatch

    Full text link

    Correlating weathered, microphenocryst-rich, intermediate tephra: An approach combining bulk and single shard analyses from the Lepué Tephra, Chile and Argentina

    Get PDF
    Chemical correlation of intermediate tephra deposits using microanalytical data is problematic because (i) the phenocryst content of their component glass shards affects major and trace element analyses (ii) bulk chemistry can be affected by variations in mineral/lithic components across the fall-out, and (iii) weathering readily alters their composition. All of these problems affect the Lepué Tephra, a prominent marker horizon extensively distributed across the Los Lagos Region of Chile and the Chile-Argentina frontier in north-western Patagonia, which was erupted from Volcán Michinmahuida at c. 11000 cal a BP. Weathering of terrestrial cover-bed deposits in this hyper-humid depositional environment leaves only a few occurrences of the tephra which contain fresh glass shards for microbeam analysis, but their highly phenocrystic nature makes data interpretation difficult. Equally, leaching of mobile elements during weathering causes considerable compositional changes across the fall-out region and is evident in bulk sample analyses. Elements such as the REE and Y, generally regarded as immobile, show marked mobility. Within the REE, the development of M-type tetrad effects and positive Ce-anomalies result from a combination of dissolution/leaching of the REE from the bulk sample and retention by co-precipitation of Ce4+ on Fe-oxyhydroxides in this high-rainfall, hyper-humid, oxic environment. Chemical correlation of the Lepué Tephra is thus not straightforward. However, by careful consideration of the data for a limited range of elements, chemical correlation can be achieved using elements which (i) are incompatible in magmatic systems (and thus their ratios are unaffected by the presence of phenocrysts in single glass shard microbeam analysis) and (ii) are not mobilised in these weathering conditions. These elements are Zr, Hf, Nb, Ta and Th. Their ratios (i) allow for the comparison of single grain and bulk sample analyses, extending the geographic range over which data can be compared for the Lepué Tephra, (ii) provide a robust chemical correlation of this weathered, intermediate tephra deposit, enabling correlation even where elements traditionally considered immobile (REE, Y, and U) have been significantly mobilised, and (iii) allow the Lepué Tephra to be distinguished from other local tephra deposits. This combined analytical approach enables tephras that have been variably weathered to become useful marker beds over much wider geographical areas than previously feasible, thereby enhancing their tephrochronological application in Quaternary research
    • …
    corecore