15 research outputs found

    Two-Component Response Regulator DegU Controls the Expression of Bacilysin in Plant-Growth-Promoting Bacterium Bacillus amyloliquefaciens FZB42

    Get PDF
    The plant-growth-promoting-rhizobacteria Bacillus amyloliquefaciens FZB42 possess an enormous potential to synthesize a wide range of antimicrobial, antiviral and nematocidal compounds. One of them, the dipeptide antibiotic bacilysin, is synthesized by FZB42 during exponential growth. Here, we have demonstrated that bacilysin is positively regulated by the two-component response regulator DegU at the transcriptional level. In addition, ScoC (Hpr), a transition state regulator, negatively controlled expression of the bacA gene, which is the first gene within the bacilysin operon. Both DegU and ScoC were bound directly at the bacA promoter region. Furthermore, a monocistronic gene located in close vicinity of the bac operon and essential for bacilysin production, ywfH, was also regulated by DegU. Transcription of the bac operon and of the ywfH gene in B. amyloliquefaciens FZB42 was positively controlled by the DegU global regulator protein. The role of interactions within a ternary complex formed by the antagonistically acting regulators DegU and ScoC as well as the bacA promoter sequence remains to be elucidated.Peer Reviewe

    Molecular mechanisms controlling bacilysin biosynthesis in plant growth promoting rhizobacterium - Bacillus amyloliquefaciens FZB42

    Get PDF
    Bacillus amyloliquefaciens FZB42 ist ein grampositives Bakterium, das in der Rhizosphäre das Pflanzenwachstum fördert (PGPR - Plant Growth Promotion) und pathogene Organismen hemmt. Abgesehen von dieser Fähigkeit produziert es eine Vielzahl von sekundären Metaboliten, die sowohl ribosomale als auch nicht-ribosomale Peptide umfassen. In dieser Arbeit erfolgte die Untersuchung der transkriptionellen Aktivierung und Regulation der Bacilysin- Biosynthese an den Promotoren der bac- und ywfH- Gene. Durch 5´-Deletionsanalysen wurde der Promotor von Bacilysin identifiziert. Die A (Sigmafaktor A) - abhängige Transkription startet über die konservierten Promotorelemente (-10 und -35) von den bac- und ywfH Genen. Die Untersuchungen der Promotoraktivitäten vom Wildtyp und den erzeugten Regulationsmutanten erfolgten über in vivo ß-Galaktosidase-(Reporter)-Assays. Die Ergebnisse der Reporter-Aktivitäten zeigten, dass Transkriptionsregulatoren die Expression der Bacilysin- Gene aktivieren. Mehrere globale Regulatoren wie DegU, ComA, Hpr und AbrB beeinflussen die Genexpression. In dieser Arbeit wurde mithilfe von DNaseI Footprinting-Analysen die DegU-Bindung an die bac- und ywfH- Promotoren bestätigt.Die negative Regulation der Bacilysin-Biosynthese wird durch den Regulator der transienten Phase Hpr bewerkstelligt. Eine direkte Hpr-Bindung an bac Promotor wurde mit DNaseI Footprint-Analysen gezeigt. Der Promotor des monocistronischen Gens ywfH wurde aber durch Hpr nicht beeinflusst. Die anderen Transkriptionsregulatoren, wie ComA und AbrB, regulieren die Genexpression von Bacilysin indirekt über DegQ und Hpr. In dieser Arbeit konnte demonstriert werden, dass der globale Regulator AbrB den Promotor vom hpr-Gen direkt kontrolliert. Zusammenfassend liefert diese Studie neue Informationen über die genetische Regulation der Bacilysin- Biosynthese in B. amyloliquefaciens FZB42.Bacillus amyloliquefaciens FZB42 is a Gram-positive, pathogen-suppressing and plant-growth promoting rhizobacterium. Apart from this ability, it produces a vast array of secondary metabolites, which includes both ribosomal and non-ribosomal peptides. In this work, the transcriptional activation and regulation of bacilysin biosynthesis were studied at the promoters of bac and ywfH genes. The promoter of bacilysin was identified using 5''-deletion analysis. Sigma factor A (σA) was found to start transcription via conserved promoter elements (-10 and -35) of bac and ywfH genes. lacZ reporter fusion studies were performed in wild type and regulatory mutants. The results show the involvement of transcriptional regulators to activate the expression of bacilysin genes. Several global regulators such as DegU, ComA, Hpr and AbrB were identified and found to influence gene expression. In particular, I confirmed DegU binding in bac and ywfH promoters using radioactive DNase I footprinting. Furthermore, Hpr, a transition state regulator was found negatively to control bacilysin biosynthesis. Hpr binding to bac promoter was demonstrated using radioactive DNase I footprinting. Remarkably, Hpr does not influence the promoter of the monocistronic gene, ywfH. The other transcriptional regulators, such as ComA and AbrB, were correlated indirectly to affect the gene expression of bacilysin via DegQ and Hpr, respectively. The gene regulation of hpr was studied in this work. It was demonstrated that AbrB, a global regulator, directly controls the promoter of the hpr gene. However, the consensus sequence for AbrB binding was not identified, since it covers the entire promoter region in the DNA-protein interaction study. To conclude, this study provides new information regarding the genetic regulation of bacilysin biosynthesis in B. amyloliquefaciens FZB42

    Losers of Primary Cilia Gain the Benefit of survival

    No full text
    In this issue, Zhao and colleagues demonstrate that loss of primary cilia in medulloblastoma cells confers resistance to the Smoothened (SMO) inhibitor sonidegib. When treated with sonidegib, medulloblastoma cells lost their cilia and gained resistance. Surprisingly, loss of cilia is associated with recurrent mutations in ciliogenesis genes that are eventually able to drive drug resistance. These findings uncover a previously unknown mechanism of cancer cells in gaining a persister-like state against anticancer agents at the expense of losing primary cilia. (C) 2017 AACR

    New SigD-regulated genes identified in the rhizobacterium Bacillus amyloliquefaciens FZB42

    No full text
    The alternative sigma factor D is known to be involved in at least three biological processes in Bacilli: flagellin synthesis, methyl-accepting chemotaxis and autolysin synthesis. Although many Bacillus genes have been identified as SigD regulon, the list may be not be complete. With microarray-based systemic screening, we found a set of genes downregulated in the sigD knockout mutant of the plant growth-promoting rhizobacterium B. amyloliquefaciens subsp. plantarum FZB42. Eight genes (appA, blsA, dhaS, spoVG, yqgA, RBAM_004640, RBAM_018080 and ytk) were further confirmed by quantitative PCR and/or northern blot to be controlled by SigD at the transcriptional level. These genes are hitherto not reported to be controlled by SigD. Among them, four genes are of unknown function and two genes (RBAM_004640 and RBAM_018080), absent in the model strain B. subtilis 168, are unique to B. amyloliquefaciens stains. The eight genes are involved in sporulation, biofilm formation, metabolite transport and several other functions. These findings extend our knowledge of the regulatory network governed by SigD in Bacillus and will further help to decipher the roles of the genes

    Novel insights into SMALED2: BICD2 mutations increase microtubule stability and cause defects in axonal and NMJ development

    No full text
    Bicaudal D2 (BICD2) encodes a highly conserved motor adaptor protein that regulates the dynein-dynactin complex in different cellular processes. Heterozygous mutations in BICD2 cause autosomal dominant lower extremity-predominant spinal muscular atrophy-2 (SMALED2). Although, various BICD2 mutations have been shown to alter interactions with different binding partners or the integrity of the Golgi apparatus, the specific pathological effects of BICD2 mutations underlying SMALED2 remain elusive. Here, we show that the fibroblasts derived from individuals with SMALED2 exhibit stable microtubules. Importantly, this effect was observed regardless of where the BICD2 mutation is located, which unifies the most likely cellular mechanism affecting microtubules. Significantly, overexpression of SMALED2-causing BICD2 mutations in the disease-relevant cell type, motor neurons, also results in an increased microtubule stability which is accompanied by axonal aberrations such as collateral branching and overgrowth. To study the pathological consequences of BICD2 mutations in vivo, and to address the controversial debate whether two of these mutations are neuron or muscle specific, we generated the first Drosophila model of SMALED2. Strikingly, neuron-specific expression of BICD2 mutants resulted in reduced neuromuscular junction size in larvae and impaired locomotion of adult flies. In contrast, expressing BICD2 mutations in muscles had no obvious effect on motor function, supporting a primarily neurological etiology of the disease. Thus, our findings contribute to the better understanding of SMALED2 pathology by providing evidence for a common pathomechanism of BICD2 mutations that increase microtubule stability in motor neurons leading to increased axonal branching and to impaired neuromuscular junction development

    New Colchicine-Derived Triazoles and Their Influence on Cytotoxicity and Microtubule Morphology

    No full text
    A series of new colchicinoids with a variable triazole unit at C-7 was synthesized through Cu­(I)-catalyzed 1,3-dipolar cycloaddition (<i>click</i>-chemistry) of a colchicine-derived azide with various alkynes and the cytotoxicity against THP-1 and Jurkat cancer cell lines was used for structural optimization. Three particularly active compounds (IC<sub>50</sub> ≤ 5 nM) were additionally investigated with respect to their efficacy against relevant solid tumor cell lines (HeLa, A549, and SK MES 1). Besides distorting the microtubule morphology by tubulin depolymerization, one compound also exhibited a pronounced centrosome declustering effect in triple negative breast cancer cells (MDA-MB-231) and nonsmall cell lung cancer cells (H1975)

    Cilium induction triggers differentiation of glioma stem cells

    No full text
    Glioblastoma multiforme (GBM) possesses glioma stem cells (GSCs) that promote self-renewal, tumor propagation, and relapse. Understanding the mechanisms of GSCs self-renewal can offer targeted therapeutic interventions. However, insufficient knowledge of GSCs' fundamental biology is a significant bottleneck hindering these efforts. Here, we show that patient-derived GSCs recruit elevated levels of proteins that ensure the temporal cilium disassembly, leading to suppressed ciliogenesis. Depleting the cilia disassembly complex components is sufficient to induce ciliogenesis in a subset of GSCs via relocating platelet-derived growth factor receptor-alpha (PDGFR-a) to a newly induced cilium. Importantly, restoring ciliogenesis enabled GSCs to switch from self-renewal to differentiation. Finally, using an organoid-based glioma invasion assay and brain xenografts in mice, we establish that ciliogenesis-induced differentiation can prevent the infiltration of GSCs into the brain. Our findings illustrate a role for cilium as a molecular switch in determining GSCs' fate and suggest cilium induction as an attractive strategy to intervene in GSCs proliferation

    Molecular basis for CPAP-tubulin interaction in controlling centriolar and ciliary length

    No full text
    Centrioles and cilia are microtubule-based structures, whose precise formation requires controlled cytoplasmic tubulin incorporation. How cytoplasmic tubulin is recognized for centriolar/ciliary-microtubule construction remains poorly understood. Centrosomal-P4.1-associated-protein (CPAP) binds tubulin via its PN2-3 domain. Here, we show that a C-terminal loop-helix in PN2-3 targets β-tubulin at the microtubule outer surface, while an N-terminal helical motif caps microtubule's α-β surface of β-tubulin. Through this, PN2-3 forms a high-affinity complex with GTP-tubulin, crucial for defining numbers and lengths of centriolar/ciliary-microtubules. Surprisingly, two distinct mutations in PN2-3 exhibit opposite effects on centriolar/ciliary-microtubule lengths. CPAP F375A, with strongly reduced tubulin interaction, causes shorter centrioles and cilia exhibiting doublet- instead of triplet-microtubules. CPAP EE343RR that unmasks the β-tubulin polymerization surface displays slightly reduced tubulin-binding affinity inducing over-elongation of newly forming centriolar/ciliary-microtubules by enhanced dynamic release of its bound tubulin. Thus CPAP regulates delivery of its bound-tubulin to define the size of microtubule-based cellular structures using a €clutch-like' mechanism

    Human brain organoids assemble functionally integrated bilateral optic vesicles

    No full text
    During embryogenesis, optic vesicles develop from the diencephalon via a multistep process of organogenesis. Using induced pluripotent stem cell (iPSC)-derived human brain organoids, we attempted to simplify the complexities and demonstrate formation of forebrain-associated bilateral optic vesicles, cellular diversity, and functionality. Around day 30, brain organoids attempt to assemble optic vesicles, which develop progressively as visible structures within 60 days. These optic vesicle-containing brain organoids (OVB-organoids) constitute a developing optic vesicle's cellular components, including primitive corneal epithelial and lens-like cells, retinal pigment epithelia, retinal progenitor cells, axon-like projections, and electrically active neuronal networks. OVB-organoids also display synapsin-1, CTIP-positive myelinated cortical neurons, and microglia. Interestingly, various light intensities could trigger photosensitive activity of OVB-organoids, and light sensitivities could be reset after transient photobleaching. Thus, brain organoids have the intrinsic ability to self-organize forebrain-associated primitive sensory structures in a topographically restricted manner and can allow interorgan interaction studies within a single organoid
    corecore