3,544 research outputs found

    A new Fermi smearing approach for scattering of multi-GeV electrons by nuclei

    Full text link
    The cross section for electron scattering by nuclei at high momentum transfers is calculated within the Fermi smearing approximation (FSA), where binding effects on the struck nucleon are introduced via the relativistic Hartree approximation (RHA). The model naturally preserves current conservation, since the response tensor for an off-shell nucleon conserves the same form that for a free one but with an effective mass. Different parameterizations for the inelastic nucleon structure function, are analyzed. The smearing at the Fermi surface is introduced through a momentum distribution obtained from a perturbative nuclear matter calculation. Recent CEBAF data on inclusive scattering of 4.05 GeV electrons on 56^{56}Fe are well reproduced for all measured geometries for the first time, as is evident from the comparison with previous calculations.Comment: 8 pages in Revtex4 style, 6 eps figures, to appear in Physical Review

    Galaxy Morphological Segregation in Clusters: Local vs. Global Conditions

    Get PDF
    We study the relative fraction of galaxy morphological types in clusters, as a function of the projected local galaxy density and different global parameters: cluster projected gas density, cluster projected total mass density , and reduced clustercentric distance. Since local and global densities are correlated, we have considered different tests to search for the parameters to which segregation show the strongest dependence. Also, we have explored the results of our analysis applied to the central regions of the clusters and their outskirts. We consider a sample of clusters of galaxies with temperature estimates to derive the projected mass density profile and the 500 density contrast radius (r500r_{500}) using the NFW model and the scaling relation respectively. The X-ray surface brightness profiles are used to obtain the projected gas density assuming the hydrostatic equilibrium model. Our results suggest that the morphological segregation in clusters is controlled by the local galaxy density in the outskirts. On the other hand, the global projected mass density, shows the strongest correlation with the fraction of morphological types in the central high density region, with a marginal dependence on the local galaxy density.Comment: 10 pages, 8 figures, Accepted AJ (February 2001 issue

    Cancellation of vorticity in steady-state non-isentropic flows of complex fluids

    Full text link
    In steady-state non-isentropic flows of perfect fluids there is always thermodynamic generation of vorticity when the difference between the product of the temperature with the gradient of the entropy and the gradient of total enthalpy is different from zero. We note that this property does not hold in general for complex fluids for which the prominent influence of the material substructure on the gross motion may cancel the thermodynamic vorticity. We indicate the explicit condition for this cancellation (topological transition from vortex sheet to shear flow) for general complex fluids described by coarse-grained order parameters and extended forms of Ginzburg-Landau energies. As a prominent sample case we treat first Korteweg's fluid, used commonly as a model of capillary motion or phase transitions characterized by diffused interfaces. Then we discuss general complex fluids. We show also that, when the entropy and the total enthalpy are constant throughout the flow, vorticity may be generated by the inhomogeneous character of the distribution of material substructures, and indicate the explicit condition for such a generation. We discuss also some aspects of unsteady motion and show that in two-dimensional flows of incompressible perfect complex fluids the vorticity is in general not conserved, due to a mechanism of transfer of energy between different levels.Comment: 12 page

    Berry phase in homogeneous K\"ahler manifolds with linear Hamiltonians

    Full text link
    We study the total (dynamical plus geometrical (Berry)) phase of cyclic quantum motion for coherent states over homogeneous K\"ahler manifolds X=G/H, which can be considered as the phase spaces of classical systems and which are, in particular cases, coadjoint orbits of some Lie groups G. When the Hamiltonian is linear in the generators of a Lie group, both phases can be calculated exactly in terms of {\em classical} objects. In particular, the geometric phase is given by the symplectic area enclosed by the (purely classical) motion in the space of coherent states.Comment: LaTeX fil

    Functional bosonization with time dependent perturbations

    Full text link
    We extend a path-integral approach to bosonization previously developed in the framework of equilibrium Quantum Field Theories, to the case in which time-dependent interactions are taken into account. In particular we consider a non covariant version of the Thirring model in the presence of a dynamic barrier at zero temperature. By using the Closed Time Path (Schwinger-Keldysh) formalism, we compute the Green's function and the Total Energy Density of the system. Since our model contains the Tomonaga Luttinger model as a particular case, we make contact with recent results on non-equilibrium electronic systems.Comment: 21 pages, 8 figure

    Neutrino-Nucleus Reactions and Muon Capture in 12C

    Full text link
    The neutrino-nucleus cross section and the muon capture rate are discussed within a simple formalism which facilitates the nuclear structure calculations. The corresponding formulae only depend on four types of nuclear matrix elements, which are currently used in the nuclear beta decay. We have also considered the non-locality effects arising from the velocity-dependent terms in the hadronic current. We show that for both observables in 12C the higher order relativistic corrections are of the order of ~5 only, and therefore do not play a significant role. As nuclear model framework we use the projected QRPA (PQRPA) and show that the number projection plays a crucial role in removing the degeneracy between the proton-neutron two quasiparticle states at the level of the mean field. Comparison is done with both the experimental data and the previous shell model calculations. Possible consequences of the present study on the determination of the νμ>νe\nu_\mu ->\nu_e neutrino oscillation probability are briefly addressed.Comment: 29 pages, 6 figures, Revtex4. Several changes were made to the previous manuscript, the results and final conclusions remain unalterable. It has been accepted for publication as a Regular Article in Physical Review

    Rapid and sudden advection of warm and dry air in the Mediterranean Basin

    Get PDF
    Rapid advection of extremely warm and dry air is studied during two events in the Mediterranean Basin. On 27 August 2010 a rapid advection of extremely warm and dry air affected the northeast Iberian Peninsula during a few hours. At the Barcelona city center, the temperature reached 39.3 ° C, which is the maximum temperature value recorded during 230 yr of daily data series. On 23 March 2008 a rapid increase of temperature and drop of relative humidity were recorded for a few hours in Heraklion (Crete). During the morning on that day, the recorded temperature reached 34 °C for several hours on the northern coastline of this island.According to the World Meteorological Organization none of these events can be classified as a heat wave, which requires at least two days of abnormally high temperatures; neither are they a heat burst as defined by the American Meteorological Society, where abnormal temperatures take place during a few minutes. For this reason, we suggest naming this type of event flash heat. By using data from automatic weather stations in the Barcelona and Heraklion area and WRF mesoscale numerical simulations, these events are analyzed. Additionally, the primary risks and possible impacts on several fields are presented

    Reply Comment on "Entropy of 2D black holes from counting microstates"

    Get PDF
    We show that the arguments proposed by Park and Yee against our recent derivation of the statistical entropy of 2D black holes do not apply to the case under considerationComment: 3 pages, LaTex file, reply to comment hep-th/991021

    A branch-point approximant for the equation of state of hard spheres

    Full text link
    Using the first seven known virial coefficients and forcing it to possess two branch-point singularities, a new equation of state for the hard-sphere fluid is proposed. This equation of state predicts accurate values of the higher virial coefficients, a radius of convergence smaller than the close-packing value, and it is as accurate as the rescaled virial expansion and better than the Pad\'e [3/3] equations of state. Consequences regarding the convergence properties of the virial series and the use of similar equations of state for hard-core fluids in dd dimensions are also pointed out.Comment: 6 pages, 4 tables, 3 figures; v2: enlarged version, extension to other dimensionalities; v3: typos in references correcte

    Prediction of stable walking for a toy that cannot stand

    Get PDF
    Previous experiments [M. J. Coleman and A. Ruina, Phys. Rev. Lett. 80, 3658 (1998)] showed that a gravity-powered toy with no control and which has no statically stable near-standing configurations can walk stably. We show here that a simple rigid-body statically-unstable mathematical model based loosely on the physical toy can predict stable limit-cycle walking motions. These calculations add to the repertoire of rigid-body mechanism behaviors as well as further implicating passive-dynamics as a possible contributor to stability of animal motions.Comment: Note: only corrections so far have been fixing typo's in these comments. 3 pages, 2 eps figures, uses epsf.tex, revtex.sty, amsfonts.sty, aps.sty, aps10.sty, prabib.sty; Accepted for publication in Phys. Rev. E. 4/9/2001 ; information about Andy Ruina's lab (including Coleman's, Garcia's and Ruina's other publications and associated video clips) can be found at: http://www.tam.cornell.edu/~ruina/hplab/index.html and more about Georg Bock's Simulation Group with whom Katja Mombaur is affiliated can be found at http://www.iwr.uni-heidelberg.de/~agboc
    corecore