32 research outputs found

    A finite volume scheme for convection-diffusion equations with nonlinear diffusion derived from the Scharfetter-Gummel scheme

    Get PDF
    International audienceWe propose a finite volume scheme for convection-diffusion equations with nonlinear diffusion. Such equations arise in numerous physical contexts. We will particularly focus on the drift-diffusion system for semiconductors and the porous media equation. In these two cases, it is shown that the transient solution converges to a steady-state solution as t tends to infinity. The introduced scheme is an extension of the Scharfetter-Gummel scheme for nonlinear diffusion. It remains valid in the degenerate case and preserves steady-states. We prove the convergence of the scheme in the nondegenerate case. Finally, we present some numerical simulations applied to the two physical models introduced and we underline the efficiency of the scheme to preserve long-time behavior of the solutions

    Preserving monotony of combined edge finite volume–finite element scheme for a bone healing model on general mesh

    Get PDF
    International audienceIn this article, we propose and analyse a combined finite volume–finite element scheme for a bone healing model. This choice of discretization allows to take into account anisotropic diffusions without imposing any restrictions on the mesh. Moreover, following the work of C. Cancès et al. 2013, we define a nonlinear correction of the diffusive terms to obtain a monotone scheme. We provide, under a numerical assumption, a complete convergenceanalysis of this corrected scheme, and present some numerical experiments which show its good behavior

    On discrete functional inequalities for some finite volume schemes

    Get PDF
    We prove several discrete Gagliardo-Nirenberg-Sobolev and Poincar\'e-Sobolev inequalities for some approximations with arbitrary boundary values on finite volume meshes. The keypoint of our approach is to use the continuous embedding of the space BV(Ω)BV(\Omega) into LN/(N−1)(Ω)L^{N/(N-1)}(\Omega) for a Lipschitz domain Ω⊂RN \Omega \subset \mathbb{R}^{N}, with N≥2N \geq 2. Finally, we give several applications to discrete duality finite volume (DDFV) schemes which are used for the approximation of nonlinear and non isotropic elliptic and parabolic problems

    Hypocoercivity and diffusion limit of a finite volume scheme for linear kinetic equations

    Get PDF
    In this article, we are interested in the asymptotic analysis of a finite volume scheme for one dimensional linear kinetic equations, with either Fokker-Planck or linearized BGK collision operator. Thanks to appropriate uniform estimates, we establish that the proposed scheme is Asymptotic-Preserving in the diffusive limit. Moreover, we adapt to the discrete framework the hypocoercivity method proposed by [J. Dolbeault, C. Mouhot and C. Schmeiser, Trans. Amer. Math. Soc., 367, 6 (2015)] to prove the exponential return to equilibrium of the approximate solution. We obtain decay rates that are bounded uniformly in the diffusive limit. Finally, we present an efficient implementation of the proposed numerical schemes, and perform numerous numerical simulations assessing their accuracy and efficiency in capturing the correct asymptotic behaviors of the models.Comment: 39 pages, 10 figures, 2 table

    Discrete hypocoercivity for a nonlinear kinetic reaction model

    Full text link
    In this article, we propose a finite volume discretization of a one dimensional nonlinear reaction kinetic model proposed in [Neumann, Schmeiser, Kint. Rel. Mod. 2016], which describes a 2-species recombination-generation process. Specifically, we establish the long-time convergence of approximate solutions towards equilibrium, at exponential rate. The study is based on an adaptation for a discretization of the linearized problem of the L2L^2 hypocoercivity method introduced in [Dolbeault, Mouhot, Schmeiser, 2015]. From this, we can deduce a local result for the discrete nonlinear problem. As in the continuous framework, this result requires the establishment of a maximum principle, which necessitates the use of monotone numerical fluxes.Comment: 30 pages, 8 figure

    Numerical convergence rate for a diffusive limit of hyperbolic systems: pp-system with damping

    Get PDF
    International audienceThis paper deals with diffusive limit of the p-system with damping and its approximation by an Asymptotic Preserving (AP) Finite Volume scheme. Provided the system is endowed with an entropy-entropy flux pair, we give the convergence rate of classical solutions of the p-system with damping towards the smooth solutions of the porous media equation using a relative entropy method. Adopting a semi-discrete scheme, we establish that the convergence rate is preserved by the approximated solutions. Several numerical experiments illustrate the relevance of this result

    A finite volume scheme for nonlinear degenerate parabolic equations

    Full text link
    We propose a second order finite volume scheme for nonlinear degenerate parabolic equations. For some of these models (porous media equation, drift-diffusion system for semiconductors, ...) it has been proved that the transient solution converges to a steady-state when time goes to infinity. The present scheme preserves steady-states and provides a satisfying long-time behavior. Moreover, it remains valid and second-order accurate in space even in the degenerate case. After describing the numerical scheme, we present several numerical results which confirm the high-order accuracy in various regime degenerate and non degenerate cases and underline the efficiency to preserve the large-time asymptotic

    Uniform L ∞ estimates for approximate solutions of the bipolar drift-diffusion system

    Get PDF
    International audienceWe establish uniform L ∞ bounds for approximate solutions of the drift-diffusion system for electrons and holes in semiconductor devices, computed with the Schar-fetter-Gummel finite-volume scheme. The proof is based on a Moser iteration technique adapted to the discrete case

    Numerical schemes for semiconductors energy- transport models

    Get PDF
    International audienceWe introduce some finite volume schemes for unipolar energy-transportmodels. Using a reformulation in dual entropy variables, we can show the decay ofa discrete entropy with control of the discrete entropy dissipation

    Multi-dimensional modeling and simulation of semiconductor nanophotonic devices

    Get PDF
    Self-consistent modeling and multi-dimensional simulation of semiconductor nanophotonic devices is an important tool in the development of future integrated light sources and quantum devices. Simulations can guide important technological decisions by revealing performance bottlenecks in new device concepts, contribute to their understanding and help to theoretically explore their optimization potential. The efficient implementation of multi-dimensional numerical simulations for computer-aided design tasks requires sophisticated numerical methods and modeling techniques. We review recent advances in device-scale modeling of quantum dot based single-photon sources and laser diodes by self-consistently coupling the optical Maxwell equations with semiclassical carrier transport models using semi-classical and fully quantum mechanical descriptions of the optically active region, respectively. For the simulation of realistic devices with complex, multi-dimensional geometries, we have developed a novel hp-adaptive finite element approach for the optical Maxwell equations, using mixed meshes adapted to the multi-scale properties of the photonic structures. For electrically driven devices, we introduced novel discretization and parameter-embedding techniques to solve the drift-diffusion system for strongly degenerate semiconductors at cryogenic temperature. Our methodical advances are demonstrated on various applications, including vertical-cavity surface-emitting lasers, grating couplers and single-photon sources
    corecore