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HYPOCOERCIVITY AND DIFFUSION LIMIT OF A FINITE VOLUME
SCHEME FOR LINEAR KINETIC EQUATIONS

MARIANNE BESSEMOULIN-CHATARD, MAXIME HERDA, AND THOMAS REY

Abstract. In this article, we are interested in the asymptotic analysis of a finite volume
scheme for one dimensional linear kinetic equations, with either Fokker-Planck or linearized
BGK collision operator. Thanks to appropriate uniform estimates, we establish that the pro-
posed scheme is Asymptotic-Preserving in the diffusive limit. Moreover, we adapt to the
discrete framework the hypocoercivity method proposed by [J. Dolbeault, C. Mouhot and C.
Schmeiser, Trans. Amer. Math. Soc., 367, 6 (2015)] to prove the exponential return to equi-
librium of the approximate solution. We obtain decay rates that are bounded uniformly in
the diffusive limit. Finally, we present an efficient implementation of the proposed numerical
schemes, and perform numerous numerical simulations assessing their accuracy and efficiency
in capturing the correct asymptotic behaviors of the models.

Keywords: Kinetic equations, finite volume methods, hypocoercivity, diffusion limit, asymptotic-
preserving schemes.
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1. Introduction

The linear kinetic equation. Many engineering or biological problems involve fluid-like
systems in transitional regimes: micro-electro-mechanical systems, space shuttle reentry, powder
and grains in storage silos, bacteria colonizing a medium, etc. As a consequence of nonequi-
librium behaviors, the macroscopic descriptions can break down, and a kinetic model may be
needed to depict accurately the system. In this contribution, we are interested in the numerical
approximation of a prototypical model for such systems. It describes the evolution of a particle
distribution function fε = fε(t, x, v), for time t ≥ 0, at position x ∈ T the one dimensional torus,
and velocity v ∈ R, solution to the initial value problem

(1.1)


ε
∂fε

∂t
+ v

∂fε

∂x
=

1

ε
Q(fε),

fε(0, x, v) = f0(x, v) ≥ 0 .

The collision operator Q describes a microscopic “collision process” acting only on the velocity
variable v and preserving the zeroth order moment of the distribution fε, namely the mass or
total number of particles. The small scaling parameter ε > 0 is the ratio between the mean free
path of particles and the length scale of observation. In the context of rarefied gas dynamics it
corresponds to the dimensionless Knudsen number. The presence of the factor ε in front of the
time derivative accounts for the fact that the system is observed on long time scales. The system
is said to be in the kinetic regime if ε ∼ 1 and in the diffusive regime if ε� 1.

Throughout this paper, the collision operator will be either of linear Fokker-Planck type:

(1.2) QFP (f)(v) = ∂v (∂vf + vf)

or of linearized BGK [7] / relaxation type:

(1.3) QBGK(f)(v) = ρM(v)−m0f(v), ρ =

∫
R
f(v) dv

where M is a given nonnegative function of v, the so-called Maxwellian whose moments are
denoted by

mk =

∫
R
|v|kM(v) dv.

In particular, m0 is the mass of M .

Remark 1. The linear BGK model appears quite naturally as a linearization of the complete,
quadratic, Boltzmann equation [11] near its global Maxwellian equilibrium M . Indeed, one can
write

QBGK(f)(v) = M(v)

∫
R
f(v∗) dv∗ − f(v)

∫
R
M(v∗) dv∗

=

∫
R

[f∗M − f M∗] dv∗,

where the usual shorthand notations ψ := ψ(v) and ψ∗ := ψ(v∗) were used.
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In the case of the BGK operator, every result in this article applies to Maxwellians M that
are even functions of v and which have finite moments mk < +∞ up to k = 4 (see Section 5.4 for
an illustration). However, in order to unify the analysis of both collision operators, we will focus
in the rest of the presentation on the classical Boltzmann’s Maxwellian, namely the centered
reduced Gaussian function

M(v) :=
1√
2π

exp

(
−|v|

2

2

)
.

In particular, m0 = 1 and QBGK(f) = ρM − f .
Remark 2. Observe that such a Maxwellian distribution verifies the elementary identity

(1.4) M ′(v) = −vM(v).

Hence, one can rewrite the Fokker-Planck operator in the following gradient form

(1.5) QFP (f) = ∂v

(
M ∂v

(
f

M

))
.

The motivations in this paper are twofold and concern the design and analysis of a numerical
scheme which is accurate in two asymptotics of (1.1). The first asymptotics is the diffusion limit
ε→ 0 and the second is the long-time asymptotics t→∞.

Diffusion limit. A natural mathematical problem concerning kinetic equations such as (1.1)
is the study of the diffusion / parabolic limit ε → 0. Thanks to the choice of time scale, it is
possible to capture nontrivial macroscopic dynamics at the limit. In order to identify the limit,
one can multiply the equation (1.1) by (1, v) and integrating in the velocity space to get

(1.6)

{
∂tρ

ε + ∂xj
ε = 0,

ε2∂tj
ε +m2∂xρ

ε + ∂xS
ε = −jε,

where the moments are defined by

ρε :=

∫
R
fε dv, jε :=

1

ε

∫
R
fε v dv, Sε :=

∫
R

(v2 −m2)fε dv.

Then, by formally taking limits ε → 0 in (1.1) and (1.6), one obtains fε → f = ρM which
implies Sε → 0 and the second equation of (1.6) yields jε → −m2∂xρ. Hence, the limit density
ρ is solution to the linear heat equation

(1.7)
∂ρ

∂t
− ∂x(m2∂xρ) = 0.

In the literature, the first results concerning the approximation of kinetic models by diffusion
equations have been proposed in [4, 41]. Justifications of asymptotic expansion of the solutions in
power of ε can be found in [3] for the neutron transport, in [18] for the Fokker-Planck equation, in
[2] for the radiative transfer equation, and in [49] for linear semiconductor Boltzmann equation.
In [43], the authors studied the diffusive limit of generalized two-velocity kinetic models. A large
class of linear collision operators was considered in [17], and approximation of kinetic equations
by diffusion is justified by homogenization in [29]. We also refer to [8, Chapter 2] for an overview
of classical hydrodynamic and parabolic limits of kinetic equations. Extensions to more general
models with fractional diffusion limits were more recently obtained in [45].

There exists a dense literature describing numerical schemes which enjoy the property of
being stable in the diffusion limit, and converge to a numerical discretization of the macroscopic
model. These schemes fall down in the so-called Asymptotic-Preserving (AP) framework and are
compatible with the kinetic and asymptotic regime of the equation. The principle of AP schemes
can be roughly summarized as the commutative diagram presented in Fig. 1.
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f εh f ε

fh f

h→ 0

ε→ 0 ε→ 0

h→ 0

Figure 1. The AP diagram (h denotes the size of the discretization)

In the framework of kinetic equations, AP schemes first appeared 20 years ago, on the one hand
for kinetic semiconductors models in two papers due to Klar [39] for the linear BGK equation
and to Schmeiser and Zwirchmayr [52] for the linear Boltzmann equation, and on the other hand
for relaxation models (e.g. two velocities Goldstein-Taylor) in the article of Jin, Pareschi, and
Toscani [36]. Two recent review papers [35, 19] contain an almost up to date bibliography on
numerical methods for collisional kinetic equations of type (1.1) and AP schemes. For even more
recent works on AP schemes, one can consult these two papers [20, 15] on particle methods and
the references therein.

Nevertheless, most of these works contain only formal proofs of the AP properties, the very
important solid lines of Fig. 1. Here are some instances of AP schemes with proofs: the micro-
macro approach of Lemou and Mieussens [42], for either discrete velocity models (Goldstein-
Taylor-like) or linear scattering model (continuous in velocity), contain some partial proofs.
These proofs were later completed by Liu and Mieussens in [44] with a very detailed stability
analysis. Note that the numerical scheme for dealing with the kinetic equation is semi-implicit
in time, but the limiting ε → 0 scheme is explicit, yielding a very restrictive parabolic CFL
condition on the time step. For the anomalous diffusion limit, let us also mention the work of
Crouseilles, Hivert, and Lemou [16] where an AP scheme is built, with a proof of convergence
(semi-discrete in time), without rate of convergence towards the equilibrium.

Hypocoercivity and large time behavior. A second classical problem in the asymptotic
analysis of kinetic equations is the large time behavior of solutions. On the class of models under
consideration, there are several ways to show that there are constants κ > 0 and C ≥ 1 such
that the solution satisfies

(1.8) ‖fε(t)− µfM‖X ≤ C‖f0 − µfM‖X e−κt,
where

µf =

∫∫
T×R

f0 dxdv ,

and X is some appropriate functional space. In the diffusive scaling under consideration, the
constants C and κ can be chosen independently of ε as ε tends to zero. In the case of the kinetic
Fokker-Planck operator, the model is simple enough so that it is actually possible to compute
explicitly the fundamental solution and derive such an estimate.

However, in recent years, more systematic and robust methods have been developed in order to
show (1.8). They are called hypocoercivity methods and can usually be seen as entropy methods
[37, 51], in the sense that the goal is to design a functional H(fε), called the (modified) entropy,
which is dissipated along the solutions. From there a control of the entropy by its dissipation
provides decay of the former with explicit rates. Hypocoercivity methods deal with the fact that
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for kinetic equations such as (1.1), dissipation / relaxation apparently occurs only in the velocity
variable. Nonetheless, thanks to the mixing properties of the transport operator v∂x in the phase
space x − v, one can recover dissipation along x and v. The denomination hypocoercivity is to
be related with the fact that if (1.8) held with C = 1 then the operator v∂x − Q(·) would be
coercive in the usual sense.

A comprehensive introduction on hypocoercivity methods may be found in the lectures of
Hérau [31]. The first hypocoercivity method introduced by Hérau and Nier for kinetic Fokker-
Planck equations [32] is very similar to the method of commutators for proving hypoellipticity
going back to the seminal work of Hörmander [33]. This method has been successfully applied
to non-hypoelliptic equations (without regularization effects), such as linear Boltzmann or BGK
equations, by Hérau [30], and Mouhot and Neumann [46]. A general abstract framework for
this method of commutators has then been given by Villani in [53]. The drawback of these
hypocoercivity methods is that they often require regularity on the initial datum and involve
estimates in equivalent weighted H1 norms leading to sometimes tedious computations. In [30],
the technique is adapted to start from only weighted L2 initial datum, but the structure of the
functional is similar.

In a recent work [21], Dolbeault, Mouhot and Schmeiser established a new hypocoercivity
method in a general abstract framework. It is based on the definition of a modified entropy taking
the form of an equivalent weighted L2 norm involving macroscopic quantities (i.e. integrated in
velocity). In this work we focus on this particular hypocoercivity method, and we show that it
is well-suited for an adaptation in the discrete framework.

Concerning the numerical methods preserving large-time behaviors of solutions, several effi-
cient numerical schemes have been developed for homogeneous kinetic equations. A full discrete
finite difference scheme for the homogeneous Fokker-Planck equation was built in the pioneering
work of Chang and Cooper [14]. More recently, several schemes preserving the exponential trend
to equilibrium have been proposed for nonlinear degenerate parabolic equations (see for example
[5, 10, 12, 28]). In [47], the question of describing correctly the equilibrium state of several non-
linear diffusion and kinetic equations is addressed together with that of the order of the schemes.
Let us also mention [24, 13] where the case of non-homogeneous Dirichlet boundary conditions
are dealt with.

In the case of inhomogeneous kinetic equations, only few results are available, as the under-
standing of hypocoercive structures is quite recent. The case of the very simple Kolmogorov
equation has been investigated in [48, 26, 27]. In [26], a time-splitting technique based on self-
similarity properties is used for solutions that decay polynomially in time. In [48, 27], the H1

method à la Hérau and Villani has been adapted for respectively a finite difference and a finite
element schemes. Lastly, let us finish with the recent paper of Dujardin, Hérau and Lafitte [22]
where the same H1 method is adapted to a finite difference scheme for the kinetic Fokker-Planck
equation (1.1)–(1.2).

Main results. In this contribution we design implicit in time finite volume schemes for (1.1)
with collision operators (1.2) and (1.3). We perform their numerical asymptotic analysis and are
able to show the following properties.

• Our schemes are AP (Theorem 1) in the diffusion limit ε → 0. Solutions converge to
solutions of a finite difference scheme solving the heat equation (1.7). Provided that the
scheme is implemented correctly (see Section 4) one can take ε = 0 in the scheme. In
particular the linear system that has to be solved at each time iteration has coefficients
and condition number that are uniformly bounded with respect to ε.

• The solutions of our schemes preserve the decay of a discrete analogue of the modified
entropy of Dolbeault, Mouhot and Schmeiser [21]. Consequently, we are able to prove
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the discrete equivalent of the exponential decay estimate (1.8) (Theorem 2). The decay
rates are bounded uniformly in the diffusion limit.

Some comments are in order. On the first hand, let us mention that an essential identity which
allows to prove both properties in the Fokker-Planck case is a discrete equivalent of (1.4). By
choosing the framework of finite volume schemes we can introduce a discrete Maxwellian at cell
centers and interfaces of the mesh in velocity. Enforcing the discrete equivalent of (1.4) just
relates these two quantities and leaves a large choice in the actual definition of the discrete
Maxwellian.

On the second hand, by choosing to adapt the L2 hypocoercivity method rather than the H1

method, we avoid the burden of estimating derivatives of the solution and dealing with com-
mutators coming from the choice of discrete derivative operators. Thus, the numerical analysis
turns out to be almost identical to what is done in the continuous case. For this reason, we
are confident that this method could successfully be applied for the asymptotic analysis of other
numerical schemes for hypocoercive equations.

Plan of the paper. The outline of this article is as follows. In Section 2, we briefly present
the results in the continuous setting. We start by establishing some uniform estimates, which
are the key point to study both the diffusive limit and the exponential return to equilibrium.
Then we state the convergence of the kinetic equation towards the heat equation as ε tends to 0.
To conclude this section, we prove the L2-hypocoercivity of both Fokker-Planck and linearized
BGK operators, by introducing a modified entropy functional which is a slight simplification
of the original version proposed by Dolbeault, Mouhot and Schmeiser [21]. In Section 3, we
adapt these results to the discrete framework. The considered numerical schemes are implicit in
time, and finite volume in space and velocity. We discretize carefully the Fokker-Planck fluxes,
in order to obtain a discrete version of the L2 entropy estimate, which is the starting point
to establish the needed discrete uniform estimates. Then our two main results are stated in
Theorem 1 (asymptotic-preserving property in the diffusive limit) and in Theorem 2 (numerical
hypocoercivity). Section 4 is then devoted to the practical implementation of our method. We
present a discretization equivalent to the proposed schemes, based on a perturbative micro-
macro formulation, and we write the obtained linear systems in explicit matrix forms for sake of
completeness. Finally in Section 5, we present several numerical experiments which demonstrate
the efficiency of our schemes. After investigating numerically the asymptotic-preserving property,
we finally study the trend to equilibrium for both Fokker-Planck and linearized BGK operators.

Acknowledgments. The authors would like to thank G. Dujardin, F. Hérau and P. Lafitte
for fruitful discussions during the conception of this article.

2. The continuous setting

For convenience, let us introduce the measures dM := M(v)dv ,

dγ = γ(v)dv := dv
M(v)

and L2(dM) (resp. L2(dγ)) the spaces of square integrable functions against the measure dM
(resp. dγ). A straightforward consequence of the Gaussian Poincaré inequality is that for any
f ∈ L2(dγ), one has

(2.1) ‖f − ρM‖L2(dγ) ≤ ‖∂v
(
f
M

)
‖L2(dM) ,

where ρ =
∫
fdv.
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2.1. Uniform estimates. With an initial data in L2(dxdγ), there is a unique solution to (1.1),
with either Fokker-Planck or BGK collision operators (see e.g. [1]). This solution conserves mass
and nonnegativity. Additionally one has the following basic “entropy” estimate.

Lemma 1. Let fε be the solution of (1.1) with initial data f0 ∈ L2(dxdγ). Then for every
t ≥ 0 ,

(2.2)
1

2

d

dt
‖fε(t)‖2L2(dxdγ) +

1

ε2
‖fε(t)− ρε(t)M‖2L2(dxdγ) ≤ 0 .

In particular one has

(2.3) max

(
‖fε‖2L∞t L2(dxdγ),

2

ε2
‖fε − ρεM‖2L2

tL
2(dxdγ)

)
≤ ‖f0‖2L2(dxdγ) .

Proof. Estimate (2.2) is obtained by multiplying (1.1) with fε/M and integrating in x and v
yielding

1

2

d

dt
‖fε‖2L2(dxdγ) +

1

2ε

∫∫
∂x

(
v

(
fε

M

)2
)

dxdv =
1

ε2

∫∫
Q(fε)

fε

M
dxdv .

The second term of the left hand side cancels.
In the case of the BGK operator, since

∫
QBGK(fε)dv = 0, one has∫∫

QBGK(fε)
fε

M
dxdv =

∫∫
QBGK(fε)

(
fε

M
− ρε

)
dxdv = −‖fε − ρεM‖2L2(dxdγ) .

In the case of the Fokker-Planck operator, an integration by parts in v and the Poincaré inequality
(2.1) yields∫∫

QFP (fε)
fε

M
dxdv = −‖∂v

(
fε

M

)
‖2L2(dxdM) ≤ −‖fε − ρεM‖2L2(dxdγ).

�

From the entropy estimate, one can gather many estimates on the moments.

Lemma 2 (Moments estimates). Under the hypotheses of Lemma 1, the moments ρε, jε and Sε
satisfy equations (1.6) and the following estimates:

(2.4) ‖ρε(t)‖L2
x
≤ ‖fε(t)‖L2(dxdγ) ,

(2.5) ε ‖jε(t)‖L2
x
≤ m

1/2
2 ‖fε(t)‖L2(dxdγ)

(2.6) ε ‖jε(t)‖L2
x
≤ m

1/2
2 ‖fε(t)− ρε(t)M‖L2(dxdγ) ,

(2.7) ‖Sε(t)‖L2
x
≤ (m4 −m2

2)1/2 ‖fε(t)− ρε(t)M‖L2(dxdγ) .

In particular, there is a constant C > 0 depending only on m2 and m4 such that

(2.8) max

(
‖ρε‖L∞t L2

x
, ε ‖jε‖L∞t L2

x
, ‖jε‖L2

tL
2
x
,

1

ε
‖Sε‖L2

tL
2
x

)
≤ C ‖f0‖L2(dxdγ) .
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Proof. In order to estimate the moments, let us observe that one can rewrite the macroscopic
quantities as

ρε =

∫
M1/2(fεM−1/2) dv,

ε jε =

∫
(vM1/2)(fεM−1/2) dv =

∫
(vM1/2)(fε − ρεM)M−1/2 dv,

Sε =

∫
(v2 −m2)M1/2(fε − ρεM)M−1/2 dv,

by symmetry of M for jε, and by definition of m2 for Sε. Then one can use Cauchy-Schwarz
inequalities to get the desired estimates. Estimate (2.8) is then a consequence of (2.3). Finally,
integrate (1.1) in v against 1 and v to get (1.6). �

2.2. Diffusive limit.

Proposition 1. Let (fε)ε≥0 be a sequence of solutions of (1.1) (with either Fokker-Planck or
BGK collision operator) with initial data f0 ∈ L2(dxdγ). Then when ε→ 0, one has

fε(t, x, v)→ f(t, x, v) = ρ(t, x)M(v) weakly in L2
t,locL

2(dxdγ)

and ρ solves the heat equation

∂tρ−m2 ∂
2
xxρ = 0 , ρ(0, x) =

∫
f0(x, v) dv.

Proof. Using that fε − ρεM is uniformly O(ε) in L2(0,∞;L2(dxdγ)) and that ρε is uniformly
bounded in L∞t L2

x, we get the existence of the limit, up to extraction of a subsequence. Then,
by combining both equations of (1.6) one gets

∂tρ
ε −m2∂

2
xxρ

ε = ε2∂tj
ε + ∂xS

ε

in the sense of distributions. Taking limits thanks to the estimates (2.8) one recovers the heat
equation. By uniqueness of the limit the whole sequence converges. �

2.3. Hypocoercivity. Let H be the subspace of the Hilbert space L2(dxdγ) composed of the
zero mean functions with canonical scalar product. The space H coincides with the orthogonal
space of the nullspace of the unbounded operator Lε = 1

εv∂x− 1
ε2Q(·) in both the Fokker-Planck

and BGK cases. One can show thanks to the method developed in [21] that the latter operator is
hypocoercive (see [53]) in H uniformly for small ε. More precisely, one has the following result.

Proposition 2. There are constants C ≥ 1 and κ > 0 such that for all ε ∈ (0, 1) and all initial
data f0 ∈ L2(dxdγ), the solution fε of (1.1) satisfies

‖fε(t)− µfM‖L2(dxdγ) ≤ C ‖f0 − µfM‖L2(dxdγ) e
−κ t.

The rest of the section is devoted to the proof of Proposition 2. We need some intermediate
results stated in the following lemmas. Up to changing f0 by f0 − µfM and correspondingly fε
and ρε by respectively fε − µfM and ρε − µf , we can assume from now on in this section that

µf =

∫∫
f0dxdv = 0 .

It follows that fε and ρε are mean-free.
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In order to prove Proposition 2, we introduce the “modified entropy functional” à la Dolbeault,
Mouhot and Schmeiser. It is a slight simplification of the original version of [21] using the fact
that we work on a bounded space domain. It reads

(2.9) H(fε(t)) =
1

2
‖fε(t)‖2L2(dxdγ) + η ε2 〈jε, ∂xφε〉L2

x
,

where φε(t, x) is the solution of the Poisson equation

−∂2
xxφ

ε = ρε ,

∫
T
φεdx = 0

and η > 0 is a small parameter to be chosen.

Lemma 3. The function φε satisfies for all t ≥ 0

‖∂xφε(t)‖L2
x
≤ CP ‖ρε(t)‖L2

x
,

‖∂t∂xφε(t)‖L2
x
≤ ‖jε(t)‖L2

x
,

where CP = 1/2π is the Poincaré constant of T.

Proof. The first estimate is obtained by testing the Poisson equation against φε and applying
the Poincaré inequality

‖∂xφε‖2L2
x

=
〈
−∂2

xxφ
ε, φε

〉
L2
x
≤ ‖ρε‖L2

x
‖φε‖L2

x
≤ CP ‖ρε‖L2

x
‖∂xφε‖L2

x
.

For the second estimate, first take the time derivative of the Poisson equation and use the
continuity equation ∂tρ

ε + ∂xj
ε = 0 to get −∂t∂2

xxφ
ε = −∂xjε. Then multiply by ∂tφε and

integrate to get

‖∂t∂xφε‖2L2
x

= 〈−∂xjε, ∂tφε〉 = 〈jε, ∂t∂xφε〉L2
x
≤ ‖jε‖L2

x
‖∂t∂xφε‖L2

x
.

�

For small enough η > 0, the square root of the modified entropy actually defines an equivalent
norm on H.

Lemma 4 (Equivalent norm). There is η1> 0 such that for all η ∈ (0, η1), there are positive
constants 0 < cη < Cη such that for all ε ∈ (0, 1) and fε ∈ H one has

cη
2
‖fε‖2L2(dxdγ) ≤ H(fε) ≤ Cη

2
‖fε‖2L2(dxdγ) .

Proof. The result follows directly from the expression of the entropy and the estimate

| 〈jε, ∂xφε〉L2
x
| ≤ ‖jε‖L2

x
‖∂xφε‖L2

x
≤ 1

ε
CP m

1/2
2 ‖fε‖2L2(dxdγ) .

�

With the previous lemmas, we can prove the main result of this section.

Proof of Proposition 2. Using the moment equation ε2∂tj
ε +m2 ∂xρ

ε + ∂xS
ε + jε = 0, the time

derivative of the entropy splits into five terms

d

dt
H(fε(t)) = T ε1 (t) + ηm2 T

ε
2 (t) + η T ε3 (t) + η T ε4 (t) + η T ε5 (t) .
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Let us precise and estimate each term:

T ε1 :=
1

2

d

dt
‖fε‖2L2(dxdγ) ≤ − 1

ε2
‖fε − ρεM‖2L2(dxdγ) ,

T ε2 := −〈∂xρε, ∂xφε〉L2
x

=
〈
ρε, ∂2

xxφ
ε
〉
L2
x

= −‖ρε‖2L2
x
,

T ε3 := −〈∂xSε, ∂xφε〉 = −〈Sε, ρε〉 ≤ (m4 −m2
2)1/2 ‖fε − ρεM‖L2(dxdγ) ‖ρε‖L2

x
,

T ε4 := −〈jε, ∂xφε〉 ≤
CP m

1/2
2

ε
‖fε − ρεM‖L2(dxdγ) ‖ρε‖L2

x
,

T ε5 := ε2 〈jε, ∂t∂xφε〉 ≤ m2‖fε − ρεM‖2L2(dxdγ) ,

where we used the estimates of Lemma 2 and Lemma 3. Combining everything, one has

d

dt
H(fε(t)) + (

1

ε2
− ηm2) ‖fε − ρεM‖2L2(dxdγ) + η m2‖ρε‖2L2

x

≤ η

(
(m4 −m2

2)1/2 +
CP m

1/2
2

ε

)
‖fε − ρεM‖L2(dxdγ) ‖ρε‖L2

x
.

It follows that for any η ∈ (0, η2) with η2 = m2/(((m4−m2
2)1/2 +CP m

1/2
2 )2 +m2

2) and ε ∈ (0, 1),
one has

d

dt
H(fε(t)) +Kη (‖fε − ρεM‖2L2(dxdγ) + ‖ρεM‖2L2(dxdγ)) ≤ 0 ,

with Kη = min(1 − ηm2, ηm2)/2. Then use the triangle inequality, (a + b)2 ≤ 2(a2 + b2) and
Lemma 4 to get that

d

dt
H(fε(t)) +

Kη

Cη
H(fε(t)) ≤ 0 ,

for all η ∈ (0,min(η1, η2)). Choose some admissible η and set κ = Kη/(2Cη) to conclude. �

3. The fully discrete setting

In this section, our aim is now to adapt the previous results to the discrete setting. To
proceed, we first introduce an implicit in time and finite volume in space discretization of (1.1)
both for Fokker-Planck and BGK cases. We then prove the discrete counterparts of the results
presented in the previous section, namely we study the diffusive limit and the exponential return
to equilibrium.
3.1. Notations.

Mesh. We first restrict the velocity domain to a bounded symmetric segment [−v?, v?], since
it is not possible in practice to implement a numerical scheme on an unbounded domain. We
consider a primal mesh of this interval composed of 2L control volumes arranged symmetrically
around v = 0. We thus get 2L + 1 distinct interface points denoted by vj+ 1

2
(for consistency

with usual finite volume notations) with j = −L, . . . , L. In this way

v−L+1/2 = −v? , v1/2 = 0 , vj+1/2 = −v−j+1/2 ∀j = 0, . . . , L .

The cells of the primal mesh are given by

Vj := (vj− 1
2
, vj+ 1

2
) , j ∈ J := {−L+ 1, . . . , L}.

Each cell Vj has length ∆vj = vj+ 1
2
− vj− 1

2
and midpoint vj . At the level of cells, the symmetry

of the velocities reads vj = −v−j+1 for all j = 1, . . . , L. We also define the dual mesh with cells

V∗j+1/2 := (vj , vj+1) , j ∈ J ∗ := {−L, . . . , L} ,
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�
v−L+1

•0
v∗−v∗

v−L+1/2

= v−L

v1/2
�
v0

�
v1

� ••
vL+1/2

= vL+1

•
v−1/2

•
v3/2 vL

� �
v−1 v2

∆v1

∆v1/2

Figure 2. Discretization of the velocity domain.

with v−L := v−L+1/2 = −v? and vL+1 := vL+1/2 = v?. The length of the dual cell V∗j+1/2 is
∆vj+1/2 = vj+1 − vj . Notations introduced are illustrated in Fig. 2.

In space, we consider a discretization of the torus T into N subintervals

Xi := (xi− 1
2
, xi+ 1

2
) , i ∈ I := Z/NZ

of length ∆xi and centers xi. In what follows, we assume that N is odd. Indeed, this assumption
is natural to obtain, among others, a discrete Poincaré inequality on the torus with our choice
of discrete gradients, as explained later.

The control volumes in phase space are defined by

Kij := Xi × Vj , ∀(i, j) ∈ I × J .
The size of the phase-space discretization is defined by δ = max(∆x,∆v) where ∆x and ∆v
are the maximum of (∆xi)i∈I and (∆vj)j∈J respectively. Finally, we set ∆t > 0 the time step,
and we define tn = n∆t for all n ≥ 0.

Discrete Maxwellians. In the case of the BGK operator (1.3), we assume that we are given
cell valuesM = (Mj)j∈J ∈ RJ satisfying the following assumptions

(3.1)


Mj > 0 , Mj = M−j+1 , ∀j = 1, . . . , L ;∑
j∈J
Mj ∆vj = 1 ;

0 < m2 ≤ m∆v
2 ≤ m2 , m∆v

4 ≤ m4 ,

where for k ∈ N
m∆v
k :=

∑
j∈J
|vj |kMj ∆vj

and m2, m2, m4 are some universal constants.
In the case of the Fokker-Planck operator (1.2), we assume that we are given interface values

(M∗j+1/2)j∈J ∗ ∈ RJ ∗ such that

(3.2)



M∗j+1/2 = M∗−j+1/2 , ∀j ∈ J ∗ ;

M∗L+1/2 = M∗−L+1/2 = 0 ;

Mj :=
M∗j−1/2 −M∗j+1/2

vj ∆vj
> 0 , ∀j ∈ J ;∑

j∈J
Mj ∆vj = 1 ;

0 < m2 ≤ m∆v
2 ≤ m2 , m∆v

4 ≤ m4 .

These assumptions on the discrete MaxwelliansM are weak and it is easy to build an example.

Example 1. Define Mj := c∆vM(vj) in the BGK case and Mj+1/2 := c̃∆vM(vj+1/2) in the
Fokker-Planck case and compute c∆v and c̃∆v to normalize the mass of (Mj)j to 1. Then, by



12 MARIANNE BESSEMOULIN-CHATARD, MAXIME HERDA, AND THOMAS REY

consistency of the piecewise constant approximation (say, in L1) the last condition in (3.1) (resp.
(3.2)) holds in the BGK case (resp. the Fokker-Planck case).
Remark 3.

• The second assumption in (3.2) is needed for technical reasons, in order to perform dis-
crete integration by parts. However, one can note that for sufficiently large domains this
hypothesis is relevant and invisible in practice because of the fast decay of the Gaussian.
• In both cases observe that symmetries of both the velocities and the Maxwellians imply

(3.3)
∑
j∈J

∆vjvjMj = 0.

• The third assumption in (3.2) is the discrete counterpart of (1.4), namely ∂vM = −vM.
• Let us underline that m∆v

2 and m∆v
4 are not consistent with m2 and m4 when ∆v tends

to zero, since we consider the problem in a bounded domain [−v∗, v∗] with zero bound-
ary values for the discrete Maxwellian. We then have an error in O(M(v∗)) for these
quantities.

As in the continuous case, we also introduce the inverse of the Maxwellian

γj =
1

Mj
, ∀j ∈ J .

Discrete gradients. Given some discrete microscopic quantity g = (gij)i∈I,j∈J defined on
control volumes and assuming that some boundary data (in velocity) (gi,L+1)i∈I and (gi,−L)i∈I
are given, one may define the discrete gradients Dvg ∈ RI×J ∗ on the dual mesh by

(Dvg)i,j+1/2 =
gi,j+1 − gij

∆vj+1/2
, ∀j ∈ J ∗ , ∀i ∈ I.

In the numerical analysis of our scheme it will be convenient to use discrete gradients in space
too. Given a macroscopic discrete quantity ρ = (ρi)i∈I , we define discrete gradients Dxρ ∈ RI
on the (primal) mesh as

(Dxρ)i =
ρi+1/2 − ρi−1/2

∆xi
, where ρi+1/2 =

ρi+1 + ρi
2

, ∀i ∈ I .

Discrete functional spaces. From there we define for microscopic quantities the discrete
weighted L2 norm

‖g‖22,γ :=
∑

(i,j)∈I×J
|gij |2 γj ∆xi ∆vj .

For macroscopic quantities, we shall need the discrete L2 norm

‖ρ‖22 :=
∑
i∈I
|ρi|2 ∆xi

and discrete Sobolev seminorm

‖Dxρ‖22 :=
∑
i∈I
|(Dxρ)i|2 ∆xi .

Finally, for a discrete Maxwellian satisfying (3.2) one can introduce the Sobolev seminorm in
velocity

‖Dvg‖22,M∗ :=
∑

(i,j)∈I×J ∗

∣∣(Dvg)i,j+1/2

∣∣2 M∗j+1/2 ∆xi ∆vj+1/2 .
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Observe that since the discrete Maxwellian vanishes at endpoints of the domain, the definition
does not involve boundary data (gi,L+1)i∈I and (gi,−L)i∈I . One has the following discrete coun-
terparts of the Gaussian and flat Poincaré inequalities. The proof of these results is given in
appendix.

Lemma 5 (Discrete Gaussian Poincaré inequality on bounded velocity domain). Given a discrete
Maxwellian on interfaces (M∗j+1/2)j∈J ∗ satisfying (3.2), one has for all f = (fj)j∈J ∈ RJ that

(3.4) ‖f − ρM‖22,γ ≤
∥∥∥∥Dv

(
f

M

)∥∥∥∥2

2,M∗
,

whereM = (Mj)j∈J is defined in (3.2) and ρ =
∑
j∈J fj∆vj.

Lemma 6 (Discrete Poincaré inequality on the torus). Assume that the number of points N in
the space discretization of the torus is odd. Then, there is a constant CP that does not depend
on ∆x such that one has for all φ = (φi)i∈I ∈ RI satisfying

∑
i∈I ∆xiφi = 0 that

(3.5) ‖φ‖2 ≤ CP ‖Dxφ‖2.

3.2. Presentation of the schemes. In this section we present numerical schemes for Equa-
tion (1.1) in both the Fokker-Planck and the BGK cases. The schemes are of finite volume type
[23], meaning that they are based on an approximation of the fluxes appearing in the integrated
version of (1.1) on each cell Kij . In the time variable we choose a backward Euler discretization.
First of all, we discretize the initial datum f0 by

f0
ij =

1

∆xi ∆vj

∫∫
Kij

f(0, x, v) dxdv, ∀(i, j) ∈ I × J .

Now let us define the schemes corresponding to each collision operator. To lighten the notations,
we omit the superscript ε for the discretization of fε and its moments in all this section, even if
these quantities obviously depend on ε as in the continuous setting.

Fully discrete Fokker-Planck equation. In the case of the Fokker-Planck operator (1.5),
the scheme is given as follows. For all i ∈ I, j ∈ J , n ≥ 0,

(3.6) ε∆xi∆vj(f
n+1
ij − fnij) + ∆t

(
Fn+1
i+ 1

2 ,j
−Fn+1

i− 1
2 ,j

)
=

∆t

ε

(
Gn+1
i,j+ 1

2

− Gn+1
i,j− 1

2

)
,

where the numerical fluxes are respectively defined for all n ≥ 0 by

Fn+1
i+ 1

2 ,j
= vj

fn+1
i+1,j + fn+1

ij

2
∆vj , ∀j ∈ J , ∀i ∈ I ,(3.7)

Gn+1
i,j+ 1

2

= M∗j+ 1
2

(
fn+1
i,j+1

Mj+1
−
fn+1
ij

Mj

)
1

∆vj+ 1
2

∆xi, ∀j ∈ J ∗ \ {−L,L}, ∀i ∈ I ,(3.8)

Gn+1
i,−L+ 1

2

= Gn+1
i,L+ 1

2

= 0, ∀i ∈ I .(3.9)

Remark 4. The first equation (3.7) is a centered discretization of the free transport. The choice
of the velocity fluxes Gi,j+ 1

2
in (3.8), which is based on the gradient form (1.5) of the Fokker-

Planck operator
QFP (f) = ∂v (M∂v (f/M))
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is fairly close to the Chang-Cooper [14, 9] or Scharfetter-Gummel [34, 50] approximation. In-
deed, if we consider a uniform velocity discretization with ∆vj = ∆v constant, and the discrete
Maxwellian defined as in Example 1, the velocity flux is then given by

Gi,j+ 1
2

=
∆xi
∆v

(B (−vj+1∆v) fi,j+1 −B (vj∆v) fi,j) ,

where B is the Bernoulli function defined by B(x) = x/(ex − 1) if x 6= 0, B(0) = 1. The Chang-
Cooper and Scharfetter-Gummel schemes are obtained by replacing vj and vj+1 by vj+1/2.

Finally, the last equation (3.9) corresponds to zero flux boundary conditions in velocity.

Fully discrete BGK equation. In the case of the BGK operator (1.3), the scheme is given
as follows. For all i ∈ I, j ∈ J , n ≥ 0,

(3.10) ε∆xi∆vj(f
n+1
ij − fnij) + ∆t

(
Fn+1
i+ 1

2 ,j
−Fn+1

i− 1
2 ,j

)
=

∆t

ε
∆xi∆vj

(
ρn+1
i Mj − fn+1

ij

)
,

where the numerical flux Fn+1
i+ 1

2 ,j
is still defined by (3.7) and for all i ∈ I and n ≥ 0, the discrete

macroscopic density is given by

(3.11) ρni :=
∑
j∈J

∆vjf
n
ij .

For future use and independently of the choice of collision operator, we also define the other used
velocity moments of the discrete distribution, namely

(3.12) Jni :=
1

ε

∑
j∈J

∆vj vj f
n
ij , Sni :=

∑
j∈J

∆vj (v2
j −m∆v

2 ) fnij ,

for all i ∈ I and n ≥ 0. Both schemes (3.6) and (3.10) clearly satisfy the discrete mass conser-
vation: ∑

(i,j)∈I×J
∆xi∆vjf

n
i,j =

∑
(i,j)∈I×J

∆xi∆vjf
0
i,j = µf , ∀n ≥ 0.

This property is obtained by using the zero flux boundary conditions in velocity (3.9) in the
Fokker-Planck case, and assumption on the discrete Maxwellian (3.1) in the BGK case.

Existence and uniqueness of a solution to the fully implicit schemes (3.6) and (3.10) will
be established in the next section as a by-product of the discrete “entropy” estimate given in
Lemma 7.

3.3. Uniform estimates. In this section we derive the discrete counterparts of the results of
Section 2.1.

Lemma 7 (Discrete “entropy” estimate). Let us consider a discrete Maxwellian satisfying (3.2)
(resp. (3.1)) and let (fnij)i∈I,j∈J ,n∈N solve the scheme (3.6) (resp. (3.10)). Then for every n ≥ 0 ,

(3.13)
‖fn+1‖22,γ − ‖fn‖22,γ

2∆t
+

1

ε2
‖fn+1 − ρn+1M‖22,γ ≤ 0 .

In particular one has

(3.14) max

(
sup
n≥0
‖fn‖22,γ ,

2

ε2

∞∑
n=1

∆t ‖fn − ρnM‖22,γ

)
≤ ‖f0‖22,γ .

Since schemes (3.6) and (3.10) are finite dimensional linear systems, we deduce from (3.14)
the uniqueness of a solution, and then the existence.

Corollary 1. The scheme (3.6) (resp. (3.10)) admits a unique solution (fnij)i∈I,j∈J ,n∈N.
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Proof of Lemma 7. We first consider the Fokker-Planck case. Multiplying (3.6) by fn+1
ij γj and

summing over i and j, we get

ε
∑

(i,j)∈I×J
∆xi∆vj(f

n+1
ij − fnij)fn+1

ij γj + ∆t
∑

(i,j)∈I×J
(Fn+1

i+ 1
2 ,j
−Fn+1

i− 1
2 ,j

)fn+1
ij γj =(3.15)

∆t

ε

∑
(i,j)∈I×J

(Gn+1
i,j+ 1

2

− Gn+1
i,j− 1

2

)fn+1
ij γj .

Using that a(a− b) ≥ (a2 − b2)/2 for all a, b ∈ R, the first term of (3.15) can be bounded from
below by

ε

2

∑
(i,j)∈I×J

∆xi∆vj
(
(fn+1
ij )2 − (fnij)

2
)
γj =

ε

2
(‖fn+1‖22,γ − ‖fn‖22,γ).

Then, using the definition (3.7) of the numerical fluxes, the second term of (3.15) gives∑
(i,j)∈I×J

(Fn+1
i+ 1

2 ,j
−Fn+1

i− 1
2 ,j

)fn+1
ij γj =

∑
(i,j)∈I×J

∆vjvjγj

(
fn+1
i+1,j + fn+1

ij

2
−
fn+1
ij + fn+1

i−1,j

2

)
fn+1
ij

=
∑
j∈J

∆vjvjγj
∑
i∈I

fn+1
i+1,jf

n+1
ij − fn+1

ij fn+1
i−1,j

2
= 0.

Finally, we perform a discrete integration by parts in velocity on the third term of (3.15) using
the zero flux boundary conditions, to obtain∑

(i,j)∈I×J
(Gn+1
i,j+ 1

2

− Gn+1
i,j− 1

2

)fn+1
ij γj = −

∑
(i,j)∈I×J ∗

Gn+1
i,j+ 1

2

(fn+1
i,j+1γj+1 − fn+1

ij γj)

= −
∑

(i,j)∈I×J ∗

∆xi
∆vj+ 1

2

M∗j+ 1
2
(fn+1
i,j+1γj+1 − fn+1

ij γj)
2

= −‖Dv(f/M)‖22,M∗

≤ −‖fn+1 − ρn+1M‖22,γ ,
thanks to the discrete Gaussian Poincaré inequality. This concludes the proof in the Fokker-
Planck case.

For the BGK operator the left hand side is exactly the same as in (3.15). Using the definition
(3.11) of ρn+1

i and the unit mass assumption on the discrete Mawxellian in (3.1), we obtain for
the right hand side∑

(i,j)∈I×J
∆xi∆vj(ρ

n+1
i Mj − fn+1

ij )fn+1
ij γj = −

∑
(i,j)∈I×J

∆xi∆vj(f
n+1
ij − ρn+1

i Mj)
2γj

= −‖fn+1 − ρn+1M‖22,γ ,
which concludes the proof. �

Lemma 8 (Discrete moments estimates). Under the hypotheses of Lemma 7, the moments
(ρni )i∈I , (Jni )i∈I and (Sni )i∈I satisfy the following estimates, for all n ∈ N:
(3.16) ‖ρn‖2 ≤ ‖fn‖2,γ ,

(3.17) ε ‖Jn‖2 ≤ (m∆v
2 )1/2 ‖fn‖2,γ ,

(3.18) ε ‖Jn‖2 ≤ (m∆v
2 )1/2 ‖fn − ρnM‖2,γ ,

(3.19) ‖Sn‖2 ≤ (m∆v
4 − (m∆v

2 )2)1/2 ‖fn − ρnM‖2,γ .
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In particular, there is a constant C > 0 depending only on the uniform bounds on m∆v
2 and m∆v

4

from hypotheses (3.1) and (3.2) such that

(3.20) max

sup
n∈N
‖ρn‖2, ε sup

n∈N
‖Jn‖2,

( ∞∑
n=0

∆t ‖Jn‖22

)1/2

,
1

ε

( ∞∑
n=0

∆t ‖Sn‖22

)1/2


≤ C ‖f0‖2,γ .

Proof. The proof is almost identical to that of Lemma 2. Indeed, just observe that the moments
rewrite as follows. First one has

ρni =
∑
j∈J

∆vj (fnijγ
1/2
j )M1/2

j .

Then, thanks to the symmetry of the discrete Maxwellian and anti-symmetry of discrete velocities
yielding (3.3), one has

Jni =
1

ε

∑
j∈J

∆vj (fnijγ
1/2
j ) (vjM1/2

j ) =
1

ε

∑
j∈J

∆vj (fnij − ρni Mj)γ
1/2
j (vjM1/2

j ) .

Finally, observe that by definition of m∆v
2 one has

Sni =
∑
j∈J

∆vj (fnij − ρni Mj)γ
1/2
j (v2

j −m∆v
2 )M1/2

j .

Then one can take the norm of each expression and use Cauchy-Schwarz inequalities to get the
desired estimates. Estimate (3.20) is then a direct consequence of (3.14). �

3.4. Asymptotic-preserving property. For macroscopic quantities we recall that approxi-
mate values at the interfaces xi+ 1

2
, i ∈ I are defined by the average

Qi+ 1
2

=
Qi +Qi+1

2
, X = ρ, J, S.

Lemma 9 (Moments equations). Let us consider a discrete Maxwellian satisfying (3.2) (resp.
(3.1)) and a solution to the scheme (3.6) (resp. (3.10)). Then the discrete moments satisfy the
following equations. For all i ∈ I, n ≥ 0,

∆xi (ρn+1
i − ρni ) + ∆t (Jn+1

i+ 1
2

− Jn+1
i− 1

2

) = 0,(3.21)

ε2 ∆xi (Jn+1
i − Jni ) + ∆t (Sn+1

i+ 1
2

− Sn+1
i− 1

2

) + ∆tm∆v
2 (ρn+1

i+ 1
2

− ρn+1
i− 1

2

) = −∆t∆xi J
n+1
i .

(3.22)

Proof. Equation (3.21) can be easily obtained by taking (3.6) (resp. (3.10)) and summing over j ∈
J . Thanks to the zero flux boundary conditions in the Fokker-Planck case, and the normalization
assumption of the Maxwellian in the BGK case, one easily sees that the contribution of the
collision operators vanishes.

To obtain the second equation, we multiply (3.6) (resp. (3.10)) by vj and sum over j. In the
Fokker-Planck case, it yields

ε2∆xi(J
n+1
i − Jni ) + ∆t(Sn+1

i+ 1
2

− Sn+1
i− 1

2

) + ∆tm∆v
2 (ρn+1

i+ 1
2

− ρn+1
i− 1

2

) =

∆t

ε

∑
j∈J

vj

(
Gn+1
i,j+ 1

2

− Gn+1
i,j− 1

2

)
.
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Performing a discrete integration by parts and using zero flux boundary conditions, we have
∆t

ε

∑
j∈J

vj

(
Gn+1
i,j+ 1

2

− Gn+1
i,j− 1

2

)
= −∆t

ε

∑
j∈J ∗

(vj+1 − vj)Gn+1
i,j+ 1

2

= −∆t

ε
∆xi

∑
j∈J ∗\{−L,L}

M∗j+ 1
2

(
fn+1
i,j+1

Mj+1
−
fn+1
ij

Mj

)
.

Now, performing again a discrete integration by parts and using that the discrete Maxwellian
vanishes at endpoints of the velocity domain (see assumption (3.2)), we obtain

∆t

ε

∑
j∈J

vj

(
Gn+1
i,j+ 1

2

− Gn+1
i,j− 1

2

)
=

∆t

ε
∆xi

∑
j∈J

(M∗j+ 1
2
−M∗j− 1

2
)
fn+1
ij

Mj

= −∆t

ε
∆xi

∑
j∈J

∆vjvjf
n+1
ij ,

which finally yields the result using definition (3.12) of Jn+1
i .

In the BGK case, we also multiply (3.10) by vj and sum over j to obtain

ε2∆xi(J
n+1
i − Jni ) + ∆t(Sn+1

i+ 1
2

− Sn+1
i− 1

2

) + ∆tm∆v
2 (ρn+1

i+ 1
2

− ρn+1
i− 1

2

) =

∆t

ε
∆xi

∑
j∈J

∆vj(ρ
n+1
i Mj − fn+1

ij )vj .

Using (3.3), the right hand side can be written as −∆t∆xiJ
n+1
i , which concludes the proof. �

Theorem 1. (Asymptotic-preserving property) Let us consider a discrete Maxwellian satisfying
(3.2) (resp. (3.1)) and let fnε = (fnij)i∈I,j∈J for n ∈ N be the solution of (3.6) (resp. (3.10)) with
initial data (f0

ij)i∈I,j∈J . Then there is ρn = (ρni )i∈I for all n ≥ 0 such that when ε→ 0 one has

fnε −→ ρnM in RI×J , for all n ≥ 1

and the limit satisfies the following finite difference scheme for the heat equation

(3.23) ∆xi
ρn+1
i − ρni

∆t
=

m∆v
2

2

(
(Dxρ

n+1)i+1 − (Dxρ
n+1)i−1

)
, ∀i ∈ I

with initial data ρ0
i =

∑
j∈J ∆vjf

0
ij.

Proof. Thanks to estimate (3.20) on the discrete macroscopic density, there is a subsequence (εk)k
such that ρnεk → ρn for all n ≥ 0. Thanks to estimate (3.14) the sequence (fnεk)k ∈ (RI×J )N

converges to (ρni Mj)i∈I,j∈J for each n ≥ 1. To identify the limit scheme, we combine (3.21)
and (3.22) to get that for ε > 0 one has for all i ∈ I and n ∈ N that

∆xi (ρn+1
i − ρni ) = m∆v

2 ∆t
1

2

(
(Dxρ

n+1)i+1 − (Dxρ
n+1)i−1

)
+ ∆t

1

2

(
(DxS

n+1)i+1 − (DxS
n+1)i−1

)
+ ε2 (Jn+1

i+ 1
2

− Jn+1
i− 1

2

)− ε2 (Jni+ 1
2
− Jni− 1

2
) .

Then thanks to estimate (3.20) it is straightforward to show that the terms of the second line
converge to 0. Finally observe that the limit scheme has a unique solution. Indeed, it consists in
inverting a matrix that is strictly diagonally dominant and thus that is non singular. Therefore
the whole sequence converges. �

Remark 5. Observe that the scheme for the heat equation keeps a trace of the velocity discretiza-
tion in the diffusion coefficient m∆v

2 .
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3.5. Numerical hypocoercivity. We shall now adapt to the discrete framework the hypocoer-
civity method proposed by Dolbeault, Mouhot and Schmeiser in [21] and summarized in Section
2.3. The main result of the section is the following.

Theorem 2. Let us consider a discrete Maxwellian satisfying (3.2) (resp. (3.1)) and assume that
the number of points N in the space discretization is odd. Then there are constants C ≥ 1 and
β > 0 such that for all ε ∈ (0, 1), all ∆t ≤ ∆tmax and all initial data (f0

ij)i∈I,j∈J , the solution
(fnij)i∈I,j∈J ,n∈N of (3.6) (resp. (3.10)) satisfies

(3.24) ‖fn − µfM‖2,γ ≤ C ‖f0 − µfM‖2,γ e−
β
2 t

n

.

Moreover, the constants C and β do not depend on the size of the discretization δ, and ∆tmax > 0
can be chosen arbitrarily.

Once again we prove the theorem assuming that the initial data has zero mean∑
(i,j)∈I×J

∆xi ∆vj f
0
ij = 0 .

In the general case one can just replace f0
ij by f0

ij − µfMj , where µf =
∑

(i,j)∈I×J ∆xi∆vjf
0
ij ,

and correspondingly fnij and ρni by respectively fnij−µfMj and ρni −µf in the following arguments.
For all n ≥ 1, let us define the discrete modified entropy functional which reads

(3.25) H(fn) :=
1

2
‖fn‖22,γ + ηε2

∑
i∈I

∆xiJ
n
i (Dxφ)ni +

ηε2

2

∑
i∈I

∆xi

(
(Dxφ)ni − (Dxφ)n−1

i

)2
∆t

,

where η > 0 will be determined later and (φni )i∈I is the solution of the following discrete Poisson
equation

− (Dxφ)ni+1 − (Dxφ)ni−1

2
= ∆xiρ

n
i , ∀i ∈ I,(3.26) ∑

i∈I
∆xiφ

n
i = 0.(3.27)

Remark 6. Observe that the discrete version of the modified entropy has an additional third
term compared to (2.9). It is of order O(∆t) and thus consistent with 0, so that taking limits in
the discretization parameters, we recover (at least formally at this stage) the continuous modified
entropy (2.9). It does not perturb the adaptation of the strategy of Section 2.3.

Let us first justify existence and unicity of (φi)i∈I satisfying (3.26)-(3.27). System (3.26) can
be written under the matrix form Aφn = ρn, where the rank of the N×N matrix A is either N−1
if N is odd, or N−2 if N is even. Observe that A is symmetric with respect to the inner product
〈φ, ψ〉 =

∑
i∈I φi ψi ∆xi. In the odd case, the condition (3.27) corresponds exactly to (φi)i∈I

being orthogonal (for the latter inner product) to the kernel of A spanned by (1, . . . , 1) ∈ RI .
Hence provided that N is odd, which is assumed in Theorem 2, the system (3.26) supplemented
with zero mean value condition (3.27) admits a unique solution.

Let us now derive the discrete estimates on (φi)i∈I .

Lemma 10. Under the assumptions of Theorem 2, one has for all n ∈ N
‖Dxφ

n‖2 ≤ CP ‖ρn‖2 ,(3.28)

∥∥∥∥ (Dxφ)n+1
i − (Dxφ)ni

∆t

∥∥∥∥
2

≤ ‖Jn+1
i ‖2 ,(3.29)

where CP is the discrete Poincaré constant of Lemma 6.
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Proof. Multiplying the discrete Poisson equation (3.26) by φni , summing on i ∈ I and performing
a discrete integration by parts, we obtain

−
∑
i∈I

∆xi ((Dxφ)ni )
2

= −
∑
i∈I

∆xiρ
n
i φ

n
i ,

which yields thanks to Cauchy-Schwarz inequality

∑
i∈I

∆xi ((Dxφ)ni )
2 ≤

(∑
i∈I

∆xi(ρ
n
i )2

) 1
2
(∑
i∈I

∆xi(φ
n
i )2

) 1
2

.

Using the Poincaré inequality (3.5) we get the first estimate.
Now, considering scheme (3.26) at time n and n+ 1, we can write

−1

2

[(
(Dxφ)n+1

i+1 − (Dxφ)n+1
i−1

)
−
(
(Dxφ)ni+1 − (Dxφ)ni−1

)]
= ∆xi(ρ

n+1
i − ρni ).

Multiplying this equality by φn+1
i − φni , summing on i ∈ I and integrating by parts, we get∑

i∈I
∆xi

[
(Dxφ)n+1

i − (Dxφ)ni
]2

=
∑
i∈I

∆xi(ρ
n+1
i − ρni )(φn+1

i − φni ).

Using the scheme (3.21), performing a discrete integration by parts and applying Cauchy-Schwarz
inequality, we obtain:∑
i∈I

∆xi
[
(Dxφ)n+1

i − (Dxφ)ni
]2

= −∆t
∑
i∈I

Jn+1
i+1 − Jn+1

i−1

2
(φn+1
i − φni )

= ∆t
∑
i∈I

∆xiJ
n+1
i

[
(Dxφ)n+1

i − (Dxφ)ni
]

≤ ∆t

(∑
i∈I

∆xi(J
n+1
i )2

) 1
2
(∑
i∈I

∆xi
[
(Dxφ)n+1

i − (Dxφ)ni
]2) 1

2

,

from which we deduce (3.29). �

Now we show that for η small enough the modified entropy functional (3.25) is an equivalent
‖ · ‖2,γ norm uniformly for small ε and mesh size.

Lemma 11. Under the assumptions of Theorem 2, and assuming that ε ≤ 1 and ∆t ≤ ∆tmax,
one has for all n ≥ 1
(3.30)(

1

2
− η (m∆v

2 )1/2

)
‖fn‖22,γ ≤ H(fn) ≤

(
1

2
+ η (m∆v

2 )1/2CP +
η

2
m∆v

2 ∆tmax

)
‖fn‖22,γ .

Proof. On the one hand, using the Cauchy-Schwarz inequality, we have

ηε2

∣∣∣∣∣∑
i∈I

∆xiJ
n
i (Dxφ)ni

∣∣∣∣∣ ≤ ηε2

(∑
i∈I

∆xi(J
n
i )2

) 1
2
(∑
i∈I

∆xi ((Dxφ)ni )
2

) 1
2

,

so that with (3.17), (3.28) and (3.16) one has

ηε2

∣∣∣∣∣∑
i∈I

∆xiJ
n
i (Dxφ)ni

∣∣∣∣∣ ≤ η (m∆v
2 )1/2 CP ε ‖fn‖22,γ .
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On the other hand the last term of H(fn) may be estimated using (3.29) and (3.17)

ηε2

2

∑
i∈I

∆xi

(
(Dxφ)ni − (Dxφ)n−1

i

)2
∆t

≤ η

2
m∆v

2 ∆t ‖fn+1‖22,γ .

We finally establish (3.30) using that ε ≤ 1 and ∆t ≤ ∆tmax. �

Proposition 3. Under the assumptions of Theorem 2, there is η2 > 0 such that for all ε ≤ 1,
∆t ≤ ∆tmax and η ≤ η2,

H(fn+1)−H(fn)

∆t
+ K(η)

(
‖fn+1 − ρn+1M‖22,γ + ‖ρn+1‖22

)
≤ 0 , ∀n ≥ 1 ,

with K(η) = 1
2 min (1− ηm2, ηm2).

Proof. Let us estimate the discrete time derivative of H. For all n ≥ 1, we have

(3.31) H(fn+1)−H(fn) =
1

2
(‖fn+1‖22,γ − ‖fn‖22,γ) + ηε2Tn1 + ηε2Tn2 ,

with

Tn1 =
∑
i∈I

∆xi
(
Jn+1
i (Dxφ)n+1

i − Jni (Dxφ)ni
)
,

Tn2 =
1

2

∑
i∈I

∆xi
∆t

((
(Dxφ)n+1

i − (Dxφ)ni
)2 − ((Dxφ)ni − (Dxφ)n−1

i

)2)
.

Concerning the first term, we proved in Lemma 7 that

(3.32)
1

2
(‖fn+1‖22,γ − ‖fn‖22,γ) ≤ −∆t

ε2
‖fn+1 − ρn+1M‖22,γ .

Then, we can write:

(3.33) Tn1 =
∑
i∈I

∆xi(J
n+1
i − Jni )(Dxφ)n+1

i +
∑
i∈I

∆xiJ
n+1
i

(
(Dxφ)n+1

i − (Dxφ)ni
)

+Rn,

where

Rn :=
∑
i∈I

∆xi
(
Jni (Dxφ)n+1

i − Jn+1
i (Dxφ)n+1

i + Jn+1
i (Dxφ)ni − Jni (Dxφ)ni

)
.

We remark that the two first sums in the right hand side of (3.33) correspond to a discrete
version of (〈∂tjε, ∂xφε〉+ 〈jε, ∂t∂xφε〉)∆t .

Let us now study the remainder term Rn. We have

Rn =
∑
i∈I

∆xi(J
n
i − Jn+1

i )
(
(Dxφ)n+1

i − (Dxφ)ni
)
,

which after a discrete integration by parts leads to

Rn =
∑
i∈I

∆xi
(
(DxJ)n+1

i − (DxJ)ni
)

(φn+1
i − φni ).

Using scheme (3.21), we get

Rn = − 1

∆t

∑
i∈I

∆xi(ρ
n+1
i − 2ρni + ρn−1

i )(φn+1
i − φni ),
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and then using scheme (3.26) followed by a discrete integration by parts, we obtain:

Rn =
1

2∆t

∑
i∈I

[(
(Dxφ)n+1

i+1 − (Dxφ)n+1
i−1

)
− 2

(
(Dxφ)ni+1 − (Dxφ)ni−1

)
+
(
(Dxφ)n−1

i+1 − (Dxφ)n−1
i−1

)]
(φn+1
i − φni )

= − 1

∆t

∑
i∈I

∆xi
(
(Dxφ)n+1

i − 2(Dxφ)ni + (Dxφ)n−1
i

) (
(Dxφ)n+1

i − (Dxφ)ni
)
.

Using that −a(a − b) + (a2 − b2)/2 = −(a − b)2/2 ≤ 0 with a = (Dxφ)n+1
i − (Dxφ)ni and

b = (Dxφ)ni − (Dxφ)n−1
i , we finally get

(3.34) Rn + Tn2 ≤ 0 .

Then gathering (3.32) and (3.34) in (3.31) results in

(3.35) H(fn+1)−H(fn) ≤ −∆t

ε2
‖fn+1 − ρn+1M‖22,γ + Tn3 ,

with

Tn3 := ηε2
∑
i∈I

∆xi(J
n+1
i − Jni )(Dxφ)n+1

i + ηε2
∑
i∈I

∆xiJ
n+1
i

(
(Dxφ)n+1

i − (Dxφ)ni
)
.

It remains now to estimate this term Tn3 . We proceed as in the continuous framework. Using
scheme (3.22) in the first sum of the right hand side, we write:

Tn3 = Tn31 + Tn32 + Tn33 + Tn34,

where

Tn31 := −η∆t
∑
i∈I

∆xi(DxS)n+1
i (Dxφ)n+1

i ,

Tn32 := −η∆t
∑
i∈I

∆xim
∆v
2 (Dxρ)n+1

i (Dxφ)n+1
i ,

Tn33 := −η∆t
∑
i∈I

∆xiJ
n+1
i (Dxφ)n+1

i ,

Tn34 := ηε2
∑
i∈I

∆xiJ
n+1
i

(
(Dxφ)n+1

i − (Dxφ)ni
)
.

Applying a discrete integration by parts and using scheme (3.26), we have

Tn31 = η∆t
∑
i∈I

Sn+1
i

(Dxφ)n+1
i+1 − (Dxφ)n+1

i−1

2
= −η∆t

∑
i∈I

∆xiS
n+1
i ρn+1

i .

Then the Cauchy-Schwarz inequality and (3.19) yields

(3.36) |Tn31| ≤ η∆t‖Sn+1‖2‖ρn+1‖2 ≤ η∆tε
√
m4 −m2

2

‖fn+1 − ρn+1M‖2,γ
ε

‖ρn+1‖2 .

Performing a discrete integration by parts and using again scheme (3.26), we get

(3.37) Tn32 = −η∆tm∆v
2

∑
i∈I

∆xi(ρ
n+1
i )2 = −η∆tm∆v

2 ‖ρn+1‖22 .

Then, applying Cauchy-Schwarz inequality followed by (3.18) and (3.28) we get

(3.38) |Tn33| ≤ η∆t ‖Jn+1‖2 ‖Dxφ
n+1‖2 ≤ η∆t CP

√
m2
‖fn+1 − ρn+1M‖2,γ

ε
‖ρn+1‖2 .
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The last remainder term is estimated again using Cauchy-Schwarz inequality followed by (3.18)
and (3.29), yielding

(3.39) |Tn34| ≤ ηε2 ‖Jn+1‖2 ‖Dxφ
n+1 −Dxφ

n‖2 ≤ η∆tm2‖fn+1 − ρn+1M‖22,γ .
Gathering (3.36), (3.37), (3.38) and (3.39) in (3.35) then gives:

H(fn+1)−H(fn) + ∆t(
1

ε2
− ηm2)‖fn+1 − ρn+1M‖22,γ + ∆tηm2‖ρn+1‖22

≤ ∆tη(
√
m4 −m2

2 +
CP
√
m2

ε
)‖fn+1 − ρn+1M‖2,γ‖ρn+1‖2.

It follows that for any η ∈ (0, η2) with

η2 :=
m2

(
√
m4 −m2

2 + CP
√
m2)2 +m2m2

,

and ε ∈ (0, 1), one has

H(fn+1)−H(fn) + ∆tK(η)
(
‖fn+1 − ρn+1M‖22,γ + ‖ρn+1‖22

)
≤ 0,

with
K(η) =

1

2
min (1− ηm2, ηm2) .

�

Proof of Theorem 2. To conclude the proof we observe that fn+1 − ρn+1M and ρn+1M are
orthogonal with respect to ‖ · ‖2,γ and thus with (3.30) one obtains

H(fn+1)−H(fn) + ∆tκ(η)H(fn+1) ≤ 0 ∀n ≥ 1,

and κ(η) = 2K(η)/K2(η) where K2(η) = 1 + 2η
√
m2CP + ηm2∆tmax. It implies

H(fn) ≤ H(f1) (1 + ∆t κ(η))
−(n−1)

= H(f1) exp(−tn−1(∆t)−1 log (1 + ∆t κ(η))) .

Since s 7→ log (1 + sκ(η)) /s is a non increasing function on ]0,+∞[ and ∆t ≤ ∆tmax, one has

H(fn+1) ≤ eβ∆tmaxH(f1)e−βt
n ∀n ≥ 1,

with maximal uniform rate

β =
1

∆tmax
log (1 + ∆tmaxκ(η)) .

Finally

H(f1) ≤ K2(η)

2
‖f1‖22,γ ≤

K2(η)

2
‖f0‖22,γ .

Provided that 0 < η < min(η1, η2), with η1 = 1/(2m
1/2
2 ) to ensure that the constant at the left

hand side of (3.30) is positive, one finally obtains (3.24), which concludes the proof of Theorem 2.
�

4. Implementation

In practice, the implementation of the schemes written as in (3.6) and (3.10) leads to two
numerical issues. First, the matrix that should be inverted is ill-conditioned for small ε. This
leads to large numerical errors near the diffusive regime and deteriorates the AP property of
the schemes. Second, the evaluation of integrated differences that are of the same order, such
as ‖fn − µfM‖2,M when n is large leads to the accumulations of machine epsilons and poor
approximations of these quantities.

In this section, we present an equivalent formulation of the schemes (3.6) and (3.10) which
solves both these issues. It is based on a perturbative micro-macro formulation introduced in
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Section 4.1. In the next subsection, we justify the uniform conditioning of the reformulated linear
systems on the whole range of ε (including ε = 0). In Section 4.2, we write the linear systems
in explicit matrix form so that the reader may implement the scheme easily and replicate the
numerical results of Section 5. The test cases illustrate the theoretical results of Theorem 1 and
Theorem 2, namely the asymptotic accuracy of our schemes in both the diffusion limit and the
large time asymptotics.

4.1. Micro-macro formulations of the schemes. Given (fnij)i∈I,j∈J ,n∈N, let us introduce
the micro and macro unknowns, (hnij)i∈I,j∈J ,n∈N and (λni )i∈I,n∈N respectively, which satisfy for
all i ∈ I, j ∈ J and n ∈ N

fnij = µfMj + λni Mj + ε hnijMj ,(4.1)

λni = ρni − µf =
∑
j∈I

fnij ∆vj − µf .(4.2)

An immediate consequence of these expressions is that

(4.3)
∑
j∈J

hnijMj ∆vj = 0 ∀i ∈ I ,∀n ∈ N .

If one writes the counterpart of the continuity equation (3.21) with the new unknowns, one gets
the following macroscopic evolution equation

(4.4) ∆xi(λ
n+1
i − λni ) + ∆t

∑
j∈J

∆vj vjMj

hn+1
i+1,j − hn+1

i−1,j

2
= 0 , ∀i ∈ I .

• In the Fokker-Planck case, if one plugs (4.1) into the scheme (3.6) and then subtracts
(4.4) multiplied by −∆vj ε, one obtains the following microscopic evolution equation

(4.5) ε2 ∆xi ∆vj (hn+1
ij − hnij) + ∆t∆vj vj

λn+1
i+1 − λn+1

i−1

2

+ ε∆t∆vj

(
vj
hn+1
i+1,j − hn+1

i−1,j

2
−
∑
k∈J

∆vk vkMk

hn+1
i+1,k − hn+1

i−1,k

2

)

= ∆t∆xi

( M∗j+1/2

∆vj+1/2Mj

(
hn+1
i,j+1 − hn+1

ij

)
−

M∗j−1/2

∆vj−1/2Mj

(
hn+1
ij − hn+1

i,j−1

))
.

• In the BGK case, if one plugs (4.1) into the scheme (3.10), one obtains the following
microscopic evolution equation

(4.6) ε2 ∆xi ∆vj (hn+1
ij − hnij) + ∆t∆vj vj

λn+1
i+1 − λn+1

i−1

2

+ ε∆t∆vj

(
vj
hn+1
i+1,j − hn+1

i−1,j

2
−
∑
k∈J

∆vk vkMk

hn+1
i+1,k − hn+1

i−1,k

2

)
= −∆t∆xi ∆vjh

n+1
ij .

Based on the previous computations, one can define three schemes. In all three cases we start
from the given initial data (f0

ij)i,j ∈ RI×J and define (h0
ij)i,j ∈ RI×J and (λ0

i )i ∈ RI according
to (4.1) and (4.2). If ε = 0, we define h0

ij = 0 for all i, j. Then the schemes are as follows.
(Sεf ) The unknown (fnij)i,j,n ∈ RI×J×N solves (3.6) in the Fokker-Planck case and (3.10) in

the BGK case. The micro and macro unknowns (hnij)i,j,n ∈ RI×J×N and (λni )i,n ∈ RI×N
are defined by (4.1) and (4.2).
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(Sελ,h) The micro and macro unknowns (hnij)i,j,n and (λni )i,n solve (4.4), (4.5) in the Fokker-
Planck case and (4.4), (4.6) in the BGK case. The unknown (fnij)i,j,n is defined by
(4.1).

(S̃ελ,h) The micro and macro unknowns (hnij)i,j,n and (λni )i,n solve the overdetermined linear
system (4.3), (4.4), (4.5) in the Fokker-Planck case and (4.3), (4.4), (4.6) in the BGK
case. The unknown (fnij)i,j,n is defined by (4.1).

These schemes happen to be well-posed and equivalent in the kinetic regime ε > 0 but not in
the diffusive regime ε = 0.

Proposition 4. The three versions of the schemes satisfy the following properties.
(i) If ε > 0, (Sεf ), (Sελ,h) and (S̃ελ,h) define the same unique (fnij)i,j,n, (hnij)i,j,n and (λni )i,n.
(ii) If ε = 0, the equivalence between the schemes does not hold. More precisely, (S0

f ) is
ill-posed, (S0

λ,h) is well-posed in the BGK case and ill-posed in the Fokker-Planck case
and (S̃0

λ,h) is well-posed.
Proof.

(i) The computations of the beginning of this section already showed that (Sεf ) ⇒ (Sελ,h).
Let us now prove that (Sελ,h)⇒ (S̃ελ,h). At n = 0 one has

∑
j∈J ∆vj h

0
ijMj = 0 for all

i ∈ I. In the Fokker-Planck case, one can multiply (4.5) byMj and sum over j ∈ J to
obtain ∑

j∈J
∆vj (ε2 hn+1

ij − ε2 hnij)Mj = 0 , ∀i ∈ I , ∀n ∈ N .

In the BGK case, it yields

(4.7)
∑
j∈J

∆vj ((ε2 + ∆t)hn+1
ij − ε2 hnij)Mj = 0 , ∀i ∈ I , ∀n ∈ N .

Therefore (4.3) holds. Finally let us show that (S̃ελ,h) ⇒ (Sεf ). Since (4.3) holds, by
multiplying (4.1) by ∆vj and summing over j ∈ J one obtains (4.2). Then, just add
(4.4) multiplied by ε∆vj to (4.5) (resp. (4.6)) to obtain (3.6) (resp. (3.10)).

(ii) Let ε = 0. In the case of the Fokker-Planck operator, let us define the discrete collision
matrix QδFP satisfying for all g = (gj)j∈J

QδFP g :=

(
1

∆vj

( M∗j+1/2

∆vj+1/2Mj
(gj+1 − gj)−

M∗j−1/2

∆vj−1/2Mj
(gj − gj−1)

))
j∈J

.

Since one has
〈
QδFP g, g

〉
2,M = ‖Dvg‖22,M, it is clear that Ker(QδFP ) = Span{(1, 1, . . . , 1)}

and therefore the linear system (4.5) (with ε = 0) has infinitely many solutions since
(vj)j∈J ∈ Ker(QδFP )⊥ = {g, s. t.

∑
j∈J gjMj∆vj = 0}. If one multiplies (4.5) by

vjMj and sums over j, one gets for any solution∑
j∈J

∆vj vjMj h
n+1
ij = −m∆v

2

λn+1
i+1 − λn+1

i−1

2∆xi
.

Then by plugging this into (4.4), we infer that (λn+1
i )i∈I is determined uniquely since it

satisfies our limit heat equation (3.23). Hence, the linear system of (S0
λ,h) has infinitely

many solutions. If we now consider the scheme (S̃0
λ,h) one has the additional equations∑

j∈J hijMj ∆vj = 0 for all i ∈ I which correspond to (hij)j ∈ Ker(QδFP )⊥ for all
i ∈ I. The solution is now unique which proves well-posedness of (S̃0

λ,h).
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In the case of the BGK operator, the situation is simpler since the discrete collision
operator QδBGK is a diagonal positive definite matrix. Hence both (S0

λ,h) and (S̃0
λ,h) are

well-posed. With similar arguments than those developed in the foregoing proof, it is
easy to show that (S0

f ) is ill-posed in both the Fokker-Planck and BGK cases.

�

An immediate consequence of the previous proposition is the following

Corollary 2. The condition number of the linear system in (S̃ελ,h) is uniformly bounded with
respect to ε ∈ [0, 1].

Proof. By invertibility of the matrices, the condition number is well defined on the whole range
ε ∈ [0, 1]. Moreover it is clearly continuous in ε. Hence the boundedness follows from uniform
continuity. �

Remark 7. By taking our schemes for the kinetic equations at ε = 0 in their formulations
(S̃0
λ,h), one is exactly solving the discrete heat equation (3.23) for (λi)i∈I , as expected in the

diffusion limit.

4.2. Explicit matrix formulation. Following the results of the previous section, our schemes
should be implemented in their robust form (S̃ελ,h). In this section, we write the explicit matrix
formulation of this scheme. At time tn, both schemes rewrite in linear system form

Mε
col U

n+1 = DεUn

with col = FP or BGK. The vector Un has two sets of components corresponding to the macro
and micro variable. They are indexed by control volumes. The first set is Un

Xi = λni for i ∈ I
and the second is Un

Kij
= hnij with (i, j) ∈ I × J . From the knowledge of Un, one can compute

the usual distribution function (fnij)i,j thanks to (4.1). Since the linear system is rectangular
(but has a unique solution as shown previously), it can be solved thanks to the pseudo-inverse

(4.8) Un+1 =
[
(Mε

col)
>Mε

col
]−1

(Mε
col)
>DεUn .

This linear system is a rewriting of the relations (4.3), (4.4), (4.5) in the Fokker-Planck case (or
(4.6) in the BGK case). The corresponding matrices Mε

col are defined by

Mε
col =

 IN Mλ,h

Mh,λ Mh,h
col

0 Nh,h

 , Dε =

IN 0
0 ε2I2L
0 0

 .

Here, we denoted by IK the K × K identity matrix and the other matrices are defined as
follows. The matrix Mλ,h has non-zero coefficients

Mλ,h
Xi,Ki+1,j

=
vjMj ∆vj ∆t

2 ∆xi
, Mλ,h

Xi,Ki−1,j
= −vjMj ∆vj ∆t

2 ∆xi
, ∀(i, j) ∈ I × J .

The matrix Mh,λ has non-zero coefficients

Mh,λ
Ki,j ,Xi+1

=
vj ∆t

2 ∆xi
, Mh,λ

Ki,j ,Xi−1
= − vj ∆t

2 ∆xi
, ∀(i, j) ∈ I × J .
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The matrix Mh,h
BGK has non-zero coefficients

∀(i, j) ∈ I × J ∀k ∈ J , k 6= j , Mh,h
Kij ,Kij

= ε2 + ∆t ,

Mh,h
Kij ,Ki+1,j

= ε
vj ∆t (1−∆vjMj)

2 ∆xi
, Mh,h

Kij ,Ki−1,j
= − ε vj ∆t (1−∆vjMj)

2 ∆xi
,

Mh,h
Kij ,Ki+1,k

= − ε vk ∆t∆vkMk

2 ∆xi
, Mh,h

Kij ,Ki−1,k
= ε

vk ∆t∆vkMk

2 ∆xi
.

The matrix Mh,h
FP has the same coefficients as Mh,h

BGK except for the following (outside the bound-
ary in velocity)

∀(i, j) ∈ I × J ∗ , Mh,h
Kij ,Kij

= ε2 +
∆t

∆vjMj

(M∗j+1/2

∆vj+1/2
+
M∗j−1/2

∆vj−1/2

)
,

Mh,h
Kij ,Ki,j+1

= −
∆tM∗j+1/2

∆vjMj ∆vj+1/2
, Mh,h

Kij ,Ki,j−1
= −

∆tM∗j−1/2

∆vjMj ∆vj−1/2
.

At the boundary, ∀i ∈ I,

Mh,h
Ki,−L+1,Ki,−L+1

= ε2 +
∆t

∆v−L+1M−L+1

(M∗−L+3/2

∆v−L+3/2

)
,

Mh,h
Ki,−L+1,Ki,−L+2

= −
∆tM∗−L+3/2

∆v−L+1M−L+1 ∆v−L+3/2
,

Mh,h
Ki,L,Ki,L

= ε2 +
∆t

∆vLML

(M∗L−1/2

∆vL−1/2

)
, Mh,h

Ki,L,Ki,L−1
= −

∆tM∗L−1/2

∆vLML ∆vL−1/2
.

Finally the matrix Nh,h, which comes from (4.3), has non-zero coefficients

Nh,hXi,Ki,j = Mj ∆vj , ∀(i, j) ∈ I × J .

5. Numerical simulations

In this final section, we shall present simulations for the overdetermined micro-macro versions
(S̃ελ,h) of our numerical schemes. We will address numerically all the features of our numerical
methods, namely their AP properties in a first subsection, and the discrete hypocoercivity in the
next ones, along with some fine properties of the numerical solutions.

The numerical method has been written in Python 3.6, using Jupyter Lab, and is available,
together with all the test cases presented in this section in [6].

Unless stated otherwise, in all the simulations we will take L = 20, namely 41 points in a
velocity box [−v∗, v∗], with v∗ = 8, and N = 51 points in the torus [0, 1]. Given that our schemes
are unconditionally stable, we shall choose ∆t = 0.1.
5.1. Numerical investigation of the AP Property.

Test 1. Convergence toward the heat equation. Let us start by investigating numeri-
cally the AP property of our schemes. We choose as an initial condition the following smooth,
far-from-equilibrium distribution

(5.1) f0(x, v) :=
1√
2π

v4 e−v
2/2 1 + cos(4πx)

2
, ∀x ∈ T, v ∈ [−v∗, v∗].
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Figure 3. Test 1. Comparison of the solution to the heat equation obtained
from the scheme (3.23) (solid line) with the solution obtained with the Fokker-
Planck scheme (4.5) with different ε, at times t = 0.05, 0.1, 0.15 and 10.

We solve first the kinetic Fokker-Planck equation with scheme (4.5), for different values of
ε, and compare the discrete density ρε at different times with the solution to the discrete heat
equation given by (3.23). The results can be found in Figure 3, where we observe a good
agreement between the convergence result of Theorem 1 and our simulations.

We then perform the same numerical investigations for the linear BGK equation with scheme
(4.6). Again, we observe in Figure 4 the convergence with respect to ε of the density ρε towards
the solution to the discrete heat equation ρ, as predicted by Theorem 1.

We will now investigate the hypocoercivity properties of our schemes, with various numerical
experiments in the Fokker-Planck and BGK cases.
5.2. The Fokker-Planck case.

Test 2. Trend to equilibrium. We shall fix ε = 1 for this numerical test case.
Let us first start to verify the results of Theorem 2, namely that the discrete solution fε to the

kinetic Fokker-Planck equation converges towards µfM in the discrete, weighted, L2 topology,
at an exponential rate.

We first perform this experiment with an initial data chosen to be random, uniformly dis-
tributed on the (x, v)−plane, but supported in v ∈ [−3, 3] (also shown in the left side of Fig-
ure 5). We observe in the rightmost part of Figure 5 that the numerical rate of convergence
of the discrete norm ‖f − µfM‖2,γ obtained with the scheme (4.5) is indeed exponential. It
also matches the rate of convergence in the spatial L2 norm of the density ρε towards the global
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Figure 4. Test 1. Comparison of the solution to the heat equation obtained
from the scheme (3.23) (solid line) with the solution obtained with the BGK
scheme (4.6) with different ε, at times t = 0.05, 0.1, 0.15 and 10.

mass µf . The numerical hypocoercivity rate for this test case is 1.003, which is close to the rate
observed1 in the paper [22].

These observations are confirmed by choosing another initial condition, such as the indicator
of a ball in the (x, v)−phase plane, as seen on the left of Figure 6. We observe in the rightmost
part of that figure the same behavior than in the previous case. The numerical rate of decay is
now 1.96, quite similar to the value observed in [22].

Finally, we also present in Figure 7 a snapshot of the particle distribution function in the
(x, v)−phase-plane at different times, illustrating its convergence towards the global Maxwellian
distribution.

Test 3. Dependency of the exponential rate on ε. For this final Fokker-Planck test,
we study the influence of ε on the rate of exponential decay of the quantity ‖fε − µfM‖2,γ . We
choose initially a uniformly distributed distribution f0 in the (x, v)−plane, with values between
0 and 1, and we let ε vary from the purely kinetic regime ε = 1 to the purely diffusive regime
ε = 0, without ever changing the other grid parameters.

We represent the results of this numerical investigation in Figure 8, by plotting the different
numerical values of ‖fε(t) − µfM‖2,γ . We observe that the rate of exponential decay seems to
have a lower bound which is uniform on ε, illustrating the fact that the result of Theorem 2 is

1Note that the quantity we compute in our paper is the square root of the one computed in [22], explaining
the factor 2 between the observations.
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Figure 5. Test 2. Left: Initial data in the (x, v)−phase-plane. Right: Time
evolution of the weighted L2 norm of the difference between fε and the global
equilibrium, ε = 1 in the Fokker-Planck case, and observed exponential rate.
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Figure 6. Test 2. Left: Initial data in the (x, v)−phase-plane. Right: Time
evolution of the weighted L2 norm of the difference between fε and the global
equilibrium, ε = 1, Fokker-Planck case.

suboptimal concerning the rate β obtained. This could of course be improved by tracking exactly
the dependence in ε in the estimates used in the proof of Theorem 2.

To make this latter statement more explicit, we show in Table 1 the value of the rate of decay,
as a function of ε. This rate decreases with ε towards a limit value.
5.3. The BGK case.

Test 4. Oscillations during the macroscopic relaxation to equilibrium. We now con-
sider the question of the macroscopic relaxation towards equilibrium. So far, we investigated the
behavior of the rate of relaxation in L2(dxdγ) of fε towards its global equilibrium µfM, namely
kinetic relaxation. We will now turn to a numerical study of the rate of relaxation in L2(dx)
of the velocity averages of fε, namely ρε, towards their constant-in-space global equilibrium µf .
We shall call this later case macroscopic relaxation.
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Figure 7. Test 2. Snapshot of the particle distribution function fε(t, x, v) in
the (x, v)−phase-plane, at times t = 0, 0.3, 0.6, and 30.
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Figure 8. Test 3. Comparison of the rate of convergence of ‖fε − µfM‖2,γ
for different values of ε, in the Fokker-Planck case.

ε Rate
1 -0.98

0.8 -1.5
0.5 -3.65

10−1 -8.04
10−2 -8.05
10−10 -8.05
0 -8.05

Table 1. Test 3. Rate of exponential decay of ‖fε(t)− µfM‖2,γ with respect to ε.
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Figure 9. Test 4. Influence of the torus size R on the macroscopic relaxation,
for R = π/4, π/2, π, and 3π/2, in the BGK case.

The behavior of this macroscopic quantity has already been presented in Figures 5 and 6, where
one can notice that the macroscopic relaxation seems bounded by the kinetic one. Nevertheless,
this macroscopic behavior is actually richer, and can even be not monotonous. To study it more
precisely, we shall consider the following close-to-equilibrium initial condition

(5.2) f0(x, v) :=

(
1 + cos

(
2πx

R

))
M(v), ∀x ∈ [0, R], v ∈ [−v∗, v∗].

Our goal is to change the size R of the torus, to see how it affects the behavior of the macroscopic
relaxation. Note that in the previous test cases, R was equal to 1.

Figure 9 presents, for the BGK case, the time evolution of the local relaxation ‖fε(t) −
µfM‖2,γ , and of the macroscopic relaxation ‖ρε(t)−µf‖L2(dx), for 4 box sizesR. The L2(Mdxdv)
norm of the scaled, microscopic unknown hε := (fε − µfM)/M is also shown on these figures.
The scaling constant ε is chosen equal to 1 in all these simulations.

We observe that, as expected through Theorem 2, the local relaxation rate is monotone and
exponential. This rate is inversely proportional to the box size R. Nevertheless, the macroscopic
rate of relaxation is not monotone, exhibiting exponentially damped oscillations. We also observe
that the upper envelope of these oscillations seems to be given by ‖hε(t)‖L2(Mdxdv), and that
this quantity seems to decay in a monotone but slightly oscillating way.

Inspired by the analysis conducted in [25], we will give a simple interpretation for these
oscillatory behaviors. Since the BGK equation we consider is linear, the initial value (5.2) we
chose corresponds to observing the time evolution of the Fourier mode in x of frequency k = 2π/R.
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Torus length R Oscillation period ν−1 Speed Rν
π/4 2.31 0.340
π/2 4.33 0.363
π 8.67 0.362

3π/2 13.5 0.350
Table 2. Test 4. Influence of the torus length on the oscillation period of
‖ρε − µf‖L2 , in the BGK case.

Going to Fourier in x in the BGK equation (1.1) amounts to solve the following integral equation

(5.3) ∂tg =

(∫
R
g(v) dv

)
M(v)− (1 + ikv) g.

The right hand side of (5.3) is the sum of an operator of multiplication by µ(v) := − (1 + ikv)
and of a rank-1 projector (towards the global Maxwellian), that we shall denote by K. This
operator then generates a strongly continuous semigroup Tk(t). Moreover, according to Weyl’s
Theorem [38], its spectrum in L2 contains the spectrum of the multiplication operator, namely
the numerical range of µ:

{−1 + iy : y ∈ R} ,
together with some discrete eigenvalues located in the complex plane on the right of this set.
Since we proved in Theorem 2 that the linear BGK equation is hypocoercive with a rate at least
β/2, necessarily, such a discrete nonzero eigenvalue λ ∈ C∗ verify

−1 ≤ <e (λ) ≤ −β/2.
Let gλ ∈ L2(dxdγ) \ {0} be the associated eigenvector. One then has

(5.4) Kgλ = (1 + λ+ ikv) gλ.

Taking the L2(dxdγ)−inner product of this relation with gλ yields

λ = −1 +
〈Kgλ, gλ〉L2(dxdγ)

‖gλ‖2L2(dxdγ)

− ik
∫
R v |gλ|2 dγ

‖gλ‖2L2(dxdγ)

= −
[

1−
(∫

R gλ(v) dv
)2

‖gλ‖2L2(dxdγ)

]
− ik

∫
R v |gλ|2 dγ

‖gλ‖2L2(dxdγ)

.(5.5)

Note that the case of the space-homogeneous solution to (1.1) corresponds to k = 0, so that
taking the integral of (5.4) yields that gλ is of zero mass. Hence, in that particular case, (5.5)
implies that λ = −1 is the only nonzero eigenvalue.

Finally, we have given a formal proof that all the nonzero eigenvalues of (5.3) can be written
as λ = −κ + iku, with 0 < κ < 1 and u ∈ R. The L2(dxdγ) norm of the solutions to this
equation will then behave as

<e exp((−κ+ iku)t) = exp(−κt) cos(k u t),

namely decay exponentially in time, while oscillating at a period proportional to k = 2π/R. This
is also in good agreement with the results from [40], where the spectrum of a fully discretized
linear BGK equation is computed and shown to behave similarly.

To verify this interpretation experimentally, we compute in Table 2 the oscillation frequency ν
with respect to the box size R. We observe that the product Rν appears indeed almost constant,
yielding u ' 0.35 in the ongoing interpretation and giving more evidences that our numerical
scheme preserves expected theoretical behaviors of the continuous equation.
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Figure 10. Test 5. Left: Equilibrium distribution (t = 40) in the
(x, v)−phase-plane. Right: Time evolution of the weighted L2 norm of the
difference between fε and the global equilibrium, ε = 1, Non-Gaussian BGK
case.

5.4. The Non-Gaussian BGK case.

Test 5. Relaxation towards a non-Gaussian equilibrium. As a final test case, we con-
sider the relaxation of the solution to the linear BGK equation towards the following equilibrium
distribution with polynomial tail:

(5.6) M(v) =
1

1 + 0.1|v|6 (cos(πv) + 1.1) .

This distribution verifies the hypothesis (3.1), namely that once projected on the velocity grid, it
is of discrete mass 1, and has uniformly bounded discrete moments of order 2 and 4. According
to Theorem 2, the solution to the discrete BGK equation solved with the scheme (3.10) will
exhibit a discrete hypocoercive behavior.

We choose the very far from equilibrium initial condition (5.1) represented on the left side of
Figure 10. Because of the fine structures in the equilibrium profile, we chose a more refined grid
than in the previous test cases, namely L = 35, N = 101 and ∆t = 0.01. We observe on the
right of Figure 10 that the solution decays exponentially towards the non-Gaussian equilibrium
(5.6).

6. Appendix. On discrete Poincaré inequalities

For the sake of completeness, we give in this Appendix the proofs of Poincaré inequalities we
used in this article. We first start with the discrete Gaussian Poincaré inequality on bounded
domain.

Proof of Lemma 5. We follow the same guidelines as in [22, Proposition 4.7]. Replacing if nec-
essary f by f − ρ, where ρ =

∑
j∈J fj∆vj , we can assume without loss of generality that ρ = 0.
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First we can remark that

‖f‖22,γ =
∑
j∈J

(fjγj)
2Mj∆vj =

1

2

∑
(j,k)∈J 2

(fkγk − fjγj)2MjMk∆vj∆vk

=
∑
j<k

(fkγk − fjγj)2MjMk∆vj∆vk.

For j < k, we have

fkγk − fjγj =

k−1∑
l=j

(fl+1γl+1 − flγl).

Then, we obtain using Cauchy-Schwarz inequality

‖f‖22,γ =
∑
j<k

k−1∑
l=j

fl+1γl+1 − flγl√
∆vl+ 1

2

√
∆vl+ 1

2

2

MjMk∆vj∆vk

≤
∑
j<k

k−1∑
l=j

(
Dv(fγ)l+ 1

2

)2

∆vl+ 1
2

 (vk − vj)MjMk∆vj∆vk.

Let us introduce F = (Fj)j∈J defined by

Fj := −
−1∑
l=j

(
Dv(fγ)l+ 1

2

)2

∆vl+ 1
2

if j ≤ −1,

Fj :=

j−1∑
l=0

(
Dv(fγ)l+ 1

2

)2

∆vl+ 1
2

if j ≥ 0,

so that for j < k, we have

Fk − Fj =

k−1∑
l=j

(
Dv(fγ)l+ 1

2

)2

∆vl+ 1
2
.

It yields

‖f‖22,γ ≤
∑
j<k

(Fk − Fj)(vk − vj)MjMk∆vj∆vk

≤ 1

2

∑
(j,k)∈J 2

(Fk − Fj)(vk − vj)MjMk∆vj∆vk

since (Fk − Fj)(vk − vj) = (Fj − Fk)(vj − vk).
Developing the right-hand side and using (3.2), we get

‖f‖22,γ ≤
∑
j∈J

FjvjMj∆vj .

Now, using the definition ofMj given in (3.2), we obtain

‖f‖22,γ ≤
∑
j∈J

Fj(M∗j− 1
2
−M∗j+ 1

2
).

Applying a discrete integration by parts, it gives

‖f‖22,γ ≤
∑
j∈J ∗

(Fj+1 − Fj)M∗j+ 1
2
,
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which finally yields the result since by definition,

Fj+1 − Fj =
(
Dv(fγ)j+ 1

2

)2

∆vj+ 1
2

=

(
Dv

(
f

M

)
j+ 1

2

)2

∆vj+ 1
2
.

�

Our numerical scheme and every result in the paper generalize in higher dimension on Carte-
sian meshes by tensorization. Hereafter we just show how it is done for one important point of
our analysis: the discrete Gaussian Poincaré inequality.

Corollary 3 (Discrete Gaussian Poincaré inequality in higher dimension). Let d ≥ 1. Given a
discrete unidimensional Maxwellian (Mk)k∈J and (M∗k+1/2)k∈J ∗ satisfying (3.2), a multi-index
j = (j1, . . . , jd) and e ∈ {1, . . . , d}, let us define multidimensional Maxwellians at cell centers
and edge/face centers respectively by

Mj :=

d∏
e=1

Mje , Mj+δe/2 := Mje+1/2

d∏
l=1
l 6=e

Mjl ,

where δe denotes the multi-index whose all components are zero, except the e-th. We also write
∆vj :=

∏d
e=1 ∆vje and ∆vj+δe/2 := ∆vje+1/2

∏d
l=1
l 6=e

∆vjl . Then for all f = (fj)j∈J d ∈ RJ d ,
one has that

(6.1)
∑
j∈J d

|fj − ρMj |2M−1
j ∆vj ≤

d∑
e=1

∑
j∈J e−1×J ∗×J d−e

(
(f/M)(j1,...,je+1,...,jd) − (f/M)(j1,...,je,...,jd)

∆vj+δe/2

)2

∆vj+δe/2Mj+δe/2 ,

where ρ =
∑
j∈J d fj∆vj.

Proof. Let us introduce the notation f (e)
j =

∑
(k1,...,ke)∈J e g(k1,...,ke,je+1,...,jd)

∏e
l=1 ∆vkl . Observe

that f (0) = f and that f (d) = ρ. Then, use Pythagoras equality and apply e − 1 times Jensen
inequality (since

∑
kMk∆vk = 1) to get∑

j∈J d |fj − ρMj |2M−1
j ∆vj

=
∑
j∈J d |

∑d
e=1(f

(e−1)
j

∏e−1
u=1Mju − f (e)

j

∏e
u=1Mju)|2M−1

j ∆vj

=
∑d
e=1

∑
j∈J d |f

(e−1)
j

∏e−1
u=1Mju − f (e)

j

∏e
u=1Mju |2M−1

j ∆vj

=
∑d
e=1

∑
(je,...,jd)∈J (d−e+1) |f (e−1)

j − f (e)
j Mje |2

∏d
u=eM−1

ju
∆vju

≤ ∑d
e=1

∑
j∈J d |fj −Mje

∑
ke∈J f(j1,...,je−1,ke,je+1,...,jd)∆vke |2M−1

j ∆vj

and one concludes by using d times the 1D discrete Gaussian Poincaré inequality (3.4). �

We finally provide a proof for the discrete Poincaré inequality on the (spatial) torus, in 1D
and on a uniform mesh to simplify the presentation. The tensorization of the inequality may be
done as before if one wants to generalize it to the multidimensional Cartesian setting.

Proof of Lemma 6. Let us assume that the grid is uniform in x, namely that ∆xi = ∆x > 0, for
any i ∈ I = {0, . . . , N−1}. We will also assume that the indices are N−periodic. This will allow
to write a much simpler proof, using discrete Fourier transform (DFT). The result yet holds true
in the general case, as long as N is odd.
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Let us define the DFT of an N−periodic vector g ∈ CN , denoted by FNg ∈ CN , by:

(FNg)k := ∆x

N−1∑
l=0

gl e
−2iπkl∆x, ∀k ∈ {0, . . . , N − 1}.

Such a discrete transform verifies the following discrete Parseval identity

(6.2)
N−1∑
l=0

|gl|2∆x =

N−1∑
k=0

|(FNg)k|
2
.

Since φ is of zero mass, one has that (FNφ)0 = 0. Then using identity (6.2), we have

‖Dxφ‖2L2 =

N−1∑
l=0

|(Dxφ)l|2 ∆x

=

N−1∑
k=0

|(FNDx φ)k|
2
.(6.3)

Since (Dxφ)l = (φl+1 − φl−1)/(2∆x), one has using the definition of the DFT that for any
k ∈ {1, . . . , N − 1}

(FNDx φ)k = −e
2iπk∆x − e−2iπk∆x

2∆x
(FN φ)k

= −i sin(2πk∆x)

∆x
(FNφ)k .(6.4)

If N is even, then for k = N/2 the right hand side of (6.4) will be equal to 0. Since N is odd,
and (FNφ)0 = 0, one has

(6.5) ‖Dxφ‖2L2 ≥ S2
∗

N−1∑
k=1

|(FNφ)k|
2

where

S∗ := min
k∈{1,...,N−1}

{∣∣∣∣ sin(2πk∆x)

∆x

∣∣∣∣}
= min

{∣∣∣∣ sin(2π∆x)

∆x

∣∣∣∣ , ∣∣∣∣ sin(π(N − 1)∆x)

∆x

∣∣∣∣}
= N

∣∣∣sin( π
N

)∣∣∣(6.6)

because ∆x = 1/N . Finally, using the Parseval identity (6.2) in (6.5) proves Lemma 6, with
CP = 1/S∗.

�

Remark 8. In the continuous setting, the optimal constant for this Poincaré inequality is CP =
1/(2π). In our case, when N → ∞, S∗ → π, which is suboptimal. This is due to the fact that
Dx is a centered discretization of ∂x. Taking a decentered discretization would yield S∗ → 2π.
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