9 research outputs found

    Cannabinoid-induced motor dysfunction via autophagy inhibition

    Get PDF
    The recreational and medical use of cannabis is largely increasing worldwide. Cannabis use, however, can cause adverse side effects, so conducting innovative studies aimed to understand and potentially reduce cannabis-evoked harms is important. Previous research conducted on cultured neural cells had supported that CNR1/CB1R (cannabinoid receptor 1), the main molecular target of cannabis, affects macroautophagy/autophagy. However, it was not known whether CNR1 controls autophagy in the brain in vivo, and, eventually, what the functional consequences of a potential CNR1-autophagy connection could be. We have now found that Δ9-tetrahydrocannabinol (THC), the major intoxicating constituent of cannabis, impairs autophagy in the mouse striatum. Administration of autophagy activators (specifically, the rapalog temsirolimus and the disaccharide trehalose) rescues THC-induced autophagy inhibition and motor dyscoordination. The combination of various genetic strategies in vivo supports the idea that CNR1 molecules located on neurons belonging to the direct (striatonigral) pathway are required for the autophagy- and motor-impairing activity of THC. By identifying autophagy as a mechanistic link between THC and motor performance, our findings may open a new conceptual view on how cannabis acts in the brain

    Subcellular specificity of cannabinoid effects in striatonigral circuits

    Get PDF
    Recent advances in neuroscience have positioned brain circuits as key units in controlling behavior, implying that their positive or negative modulation necessarily leads to specific behavioral outcomes. However, emerging evidence suggests that the activation or inhibition of specific brain circuits can actually produce multimodal behavioral outcomes. This study shows that activation of a receptor at different subcellular locations in the same neuronal circuit can determine distinct behaviors. Pharmacological activation of type 1 cannabinoid (CB1) receptors in the striatonigral circuit elicits both antinociception and catalepsy in mice. The decrease in nociception depends on the activation of plasma membrane-residing CB1 receptors (pmCB1), leading to the inhibition of cytosolic PKA activity and substance P release. By contrast, mitochondrial-associated CB1 receptors (mtCB1) located at the same terminals mediate cannabinoid-induced catalepsy through the decrease in intra-mitochondrial PKA-dependent cellular respiration and synaptic transmission. Thus, subcellular-specific CB1 receptor signaling within striatonigral circuits determines multimodal control of behavior

    RÎle du récepteur cannabinoïde de type-1 dans la physiologie des ganglions de la base

    No full text
    Le systĂšme endocannabinoĂŻde (ECS) est un rĂ©seau de neuromodulation impliquĂ© dans un large Ă©ventail de fonctions physiologiques. Il est composĂ© d’endocannabinoĂŻdes, les rĂ©cepteurs et les enzymes impliquĂ©es dans leurs biosynthĂšses et dĂ©gradations. Dans le systĂšme nerveux central l’action des endocannabinoĂŻdes est principalement rĂ©gulĂ©e par le rĂ©cepteur cannabinoĂŻde de type 1 (CB1), un GPCR Ă  sept domaines transmembranaires exprimĂ© de maniĂšre quasi ubiquitaire, situĂ© dans plusieurs types de cellules mais aussi dans diffĂ©rents compartiments subcellulaires, Ă  savoir les mitochondries. Les rĂ©cepteurs CB1 sont Ă©galement la cible principale des phytocannabinoĂŻdes tels que le Δ-9-tĂ©trahydrocannabinol (THC), le principal composĂ© psycho-actif de la plante Cannabis Sativa. Lors d'une activation physiologique ou pharmacologique, les rĂ©cepteurs CB1 modulent l'excitabilitĂ© neuronale et la libĂ©ration de neurotransmetteurs, jouant ainsi un rĂŽle crucial dans la transmission synaptique et la plasticitĂ©. L’un des pools les plus importants de rĂ©cepteurs CB1 dans le cerveau est situĂ© dans le striatum, la structure principale des ganglions de la base (BG). Les BG sont un groupe de noyaux sous-corticaux impliquĂ©s dans les boucles cortico-thalamique-corticales nĂ©cessaires aux comportements adaptatifs tels que la coordination motrice, l’apprentissage des habiletĂ©s motrices et la formation des mĂ©moires procĂ©durales. Le striatum, principalement composĂ© de neurones Ă©pineux moyens (MSNs) GABAergiques, intĂšgre les entrĂ©es glutamatergiques provenant des zones corticales et des noyaux thalamiques et module leur activitĂ© via ses structures cibles. Les MSNs sont divisĂ©s en deux populations neuronales formant les circuits direct et indirect, qui diffĂšrent pour leur rĂ©gion cible, respectivement Substantia Nigra pars reticulata (SNr) et Globus Pallidus externe (GPe). L’activation de ces deux voies induit une rĂ©gulation opposĂ©e des noyaux thalamiques, cible finale des circuits des BG, et leur Ă©quilibre est considĂ©rĂ© comme le mĂ©canisme qui permet un large Ă©ventail de fonctions des BG. Les fibres dopaminergiques, qui proviennent de la Substantia Nigra pars compacta (SNc) sont un modulateur clĂ© des circuits striataux. Le projet prĂ©sentĂ© dans ma thĂšse de doctorat visait Ă  comprendre le rĂŽle des rĂ©cepteurs CB1 situĂ©s dans les diffĂ©rentes voies striatales. En particulier, en utilisant des manipulations virales et/ou gĂ©nĂ©tiques pour cibler les rĂ©cepteurs CB1 striataux, nous avons Ă©tudiĂ© leur implication dans l’action du THC ou de l’amphĂ©tamine, qui sont connus pour agir sur la physiologie striatale. De maniĂšre intĂ©ressante, nous avons trouvĂ© une implication spĂ©cifique des rĂ©cepteurs CB1 situĂ©s dans la voie directe ou indirecte dans la mĂ©diation des effets comportementaux et synaptiques de ces drogues. De plus, nous avons constatĂ© qu’au sein d’un mĂȘme circuit cĂ©rĂ©bral, diffĂ©rents pools subcellulaires de rĂ©cepteurs CB1 sont impliquĂ©s dans diffĂ©rentes fonctions neurophysiologiques (libĂ©ration de neurotransmetteur ou neuropeptides), et que leur activation entraĂźne donc des effets synaptiques et comportementaux diffĂ©rents. Nos rĂ©sultats mettent en Ă©vidence des nouveaux rĂŽles spĂ©cifiques des rĂ©cepteurs CB1 en fonction de leur localisation, du circuit et/ou des compartiments subcellulaires, dans la mĂ©diation de l’action des drogues d’abus, reprĂ©sentant une nouvelle cible pour des traitements spĂ©cifiquesThe endocannabinoid system (ECS) is a neuromodulatoy network involved in a wide range of physiological functions. ECS comprises endocannabinoids, receptors, and enzymes involved in their synthesis and degradation. In the CNS the action of endocannabinoids is mainly mediated by the cannabinoid type-1 (CB1) receptor, a seven-transmembrane GPCR expressed almost ubiquitously, located in several cell types but also in subcellular compartments, i.e. mitochondria and plasma membranes. CB1 receptors are also the main target of phytocannabinoids such as Δ-9-tetrahydrocannabinol (THC), the main psycho-active compound of the plant Cannabis Sativa. Upon physiological or pharmacological activation, CB1 receptors can modulate neuronal excitability and neurotransmitter release, playing a crucial role in the regulation of synaptic transmission and plasticity. One of the highest pools of CB1 receptors in the brain is located in the striatum, the main structure of Basal Ganglia (BG). BG are a group of subcortical nuclei involved in cortico-thalamic-cortical loops necessary for adaptive behaviors such as motor coordination, motor skills learning, and procedural memory formations. The striatum, mainly composed by GABAergic medium spiny projection neurons (MSNs), represents the input structure of BG receiving glutamatergic inputs rising from cortical areas and thalamic nuclei. MSNs are segregated into two neuronal subpopulations forming the direct and indirect pathways, which project to the Substantia Nigra pars reticulata (SNr) or the external segment of the Globus Pallidus (GPe) respectively. The activation of these two pathways induces opposite regulation of thalamic nuclei, the final target of BG circuits, and their balance is thought to be the mechanism underlying the wide range of BG functions. Key modulators of BG circuits are dopaminergic fibers which originate from Substantia Nigra pars compacta (SNc) and exert opposite effects on MSNs belonging to direct or indirect pathway. However, the involvement of the ECS in the modulation of striatal activity and functions is poorly investigated. The project presented in my PhD thesis aimed at understand the distinct role of CB1 receptors in direct or indirect striatal MSNs. In particular, using viral and/or genetic manipulations to specifically target striatal CB1 receptors, we investigated the involvement of these receptors in mediating the action of THC or amphetamine, which are known to act on striatal physiology. Interestingly, we found a specific involvement of CB1 receptors located in direct vs indirect striatal pathways in mediating the behavioral effects of these drugs. Within the same brain circuit different subcellular pools of CB1 receptors are involved in different neurophysiological functions (neurotransmitter vs neuropeptide release), and therefore their activation mediates different synaptic and behavioral effects. Our results highlight new specific roles for CB1 receptors depending on their location, circuit and/or subcellular compartments, in mediating the action of drugs of abuse, representing a new target for specific treatment

    RÎle du récepteur cannabinoïde de type-1 dans la physiologie des ganglions de la base

    No full text
    The endocannabinoid system (ECS) is a neuromodulatoy network involved in a wide range of physiological functions. ECS comprises endocannabinoids, receptors, and enzymes involved in their synthesis and degradation. In the CNS the action of endocannabinoids is mainly mediated by the cannabinoid type-1 (CB1) receptor, a seven-transmembrane GPCR expressed almost ubiquitously, located in several cell types but also in subcellular compartments, i.e. mitochondria and plasma membranes. CB1 receptors are also the main target of phytocannabinoids such as Δ-9-tetrahydrocannabinol (THC), the main psycho-active compound of the plant Cannabis Sativa. Upon physiological or pharmacological activation, CB1 receptors can modulate neuronal excitability and neurotransmitter release, playing a crucial role in the regulation of synaptic transmission and plasticity. One of the highest pools of CB1 receptors in the brain is located in the striatum, the main structure of Basal Ganglia (BG). BG are a group of subcortical nuclei involved in cortico-thalamic-cortical loops necessary for adaptive behaviors such as motor coordination, motor skills learning, and procedural memory formations. The striatum, mainly composed by GABAergic medium spiny projection neurons (MSNs), represents the input structure of BG receiving glutamatergic inputs rising from cortical areas and thalamic nuclei. MSNs are segregated into two neuronal subpopulations forming the direct and indirect pathways, which project to the Substantia Nigra pars reticulata (SNr) or the external segment of the Globus Pallidus (GPe) respectively. The activation of these two pathways induces opposite regulation of thalamic nuclei, the final target of BG circuits, and their balance is thought to be the mechanism underlying the wide range of BG functions. Key modulators of BG circuits are dopaminergic fibers which originate from Substantia Nigra pars compacta (SNc) and exert opposite effects on MSNs belonging to direct or indirect pathway. However, the involvement of the ECS in the modulation of striatal activity and functions is poorly investigated. The project presented in my PhD thesis aimed at understand the distinct role of CB1 receptors in direct or indirect striatal MSNs. In particular, using viral and/or genetic manipulations to specifically target striatal CB1 receptors, we investigated the involvement of these receptors in mediating the action of THC or amphetamine, which are known to act on striatal physiology. Interestingly, we found a specific involvement of CB1 receptors located in direct vs indirect striatal pathways in mediating the behavioral effects of these drugs. Within the same brain circuit different subcellular pools of CB1 receptors are involved in different neurophysiological functions (neurotransmitter vs neuropeptide release), and therefore their activation mediates different synaptic and behavioral effects. Our results highlight new specific roles for CB1 receptors depending on their location, circuit and/or subcellular compartments, in mediating the action of drugs of abuse, representing a new target for specific treatmentsLe systĂšme endocannabinoĂŻde (ECS) est un rĂ©seau de neuromodulation impliquĂ© dans un large Ă©ventail de fonctions physiologiques. Il est composĂ© d’endocannabinoĂŻdes, les rĂ©cepteurs et les enzymes impliquĂ©es dans leurs biosynthĂšses et dĂ©gradations. Dans le systĂšme nerveux central l’action des endocannabinoĂŻdes est principalement rĂ©gulĂ©e par le rĂ©cepteur cannabinoĂŻde de type 1 (CB1), un GPCR Ă  sept domaines transmembranaires exprimĂ© de maniĂšre quasi ubiquitaire, situĂ© dans plusieurs types de cellules mais aussi dans diffĂ©rents compartiments subcellulaires, Ă  savoir les mitochondries. Les rĂ©cepteurs CB1 sont Ă©galement la cible principale des phytocannabinoĂŻdes tels que le Δ-9-tĂ©trahydrocannabinol (THC), le principal composĂ© psycho-actif de la plante Cannabis Sativa. Lors d'une activation physiologique ou pharmacologique, les rĂ©cepteurs CB1 modulent l'excitabilitĂ© neuronale et la libĂ©ration de neurotransmetteurs, jouant ainsi un rĂŽle crucial dans la transmission synaptique et la plasticitĂ©. L’un des pools les plus importants de rĂ©cepteurs CB1 dans le cerveau est situĂ© dans le striatum, la structure principale des ganglions de la base (BG). Les BG sont un groupe de noyaux sous-corticaux impliquĂ©s dans les boucles cortico-thalamique-corticales nĂ©cessaires aux comportements adaptatifs tels que la coordination motrice, l’apprentissage des habiletĂ©s motrices et la formation des mĂ©moires procĂ©durales. Le striatum, principalement composĂ© de neurones Ă©pineux moyens (MSNs) GABAergiques, intĂšgre les entrĂ©es glutamatergiques provenant des zones corticales et des noyaux thalamiques et module leur activitĂ© via ses structures cibles. Les MSNs sont divisĂ©s en deux populations neuronales formant les circuits direct et indirect, qui diffĂšrent pour leur rĂ©gion cible, respectivement Substantia Nigra pars reticulata (SNr) et Globus Pallidus externe (GPe). L’activation de ces deux voies induit une rĂ©gulation opposĂ©e des noyaux thalamiques, cible finale des circuits des BG, et leur Ă©quilibre est considĂ©rĂ© comme le mĂ©canisme qui permet un large Ă©ventail de fonctions des BG. Les fibres dopaminergiques, qui proviennent de la Substantia Nigra pars compacta (SNc) sont un modulateur clĂ© des circuits striataux. Le projet prĂ©sentĂ© dans ma thĂšse de doctorat visait Ă  comprendre le rĂŽle des rĂ©cepteurs CB1 situĂ©s dans les diffĂ©rentes voies striatales. En particulier, en utilisant des manipulations virales et/ou gĂ©nĂ©tiques pour cibler les rĂ©cepteurs CB1 striataux, nous avons Ă©tudiĂ© leur implication dans l’action du THC ou de l’amphĂ©tamine, qui sont connus pour agir sur la physiologie striatale. De maniĂšre intĂ©ressante, nous avons trouvĂ© une implication spĂ©cifique des rĂ©cepteurs CB1 situĂ©s dans la voie directe ou indirecte dans la mĂ©diation des effets comportementaux et synaptiques de ces drogues. De plus, nous avons constatĂ© qu’au sein d’un mĂȘme circuit cĂ©rĂ©bral, diffĂ©rents pools subcellulaires de rĂ©cepteurs CB1 sont impliquĂ©s dans diffĂ©rentes fonctions neurophysiologiques (libĂ©ration de neurotransmetteur ou neuropeptides), et que leur activation entraĂźne donc des effets synaptiques et comportementaux diffĂ©rents. Nos rĂ©sultats mettent en Ă©vidence des nouveaux rĂŽles spĂ©cifiques des rĂ©cepteurs CB1 en fonction de leur localisation, du circuit et/ou des compartiments subcellulaires, dans la mĂ©diation de l’action des drogues d’abus, reprĂ©sentant une nouvelle cible pour des traitements spĂ©cifique

    Role of type-1 cannabinoid receptor in basal ganglia physiology

    No full text
    Le systĂšme endocannabinoĂŻde (ECS) est un rĂ©seau de neuromodulation impliquĂ© dans un large Ă©ventail de fonctions physiologiques. Il est composĂ© d’endocannabinoĂŻdes, les rĂ©cepteurs et les enzymes impliquĂ©es dans leurs biosynthĂšses et dĂ©gradations. Dans le systĂšme nerveux central l’action des endocannabinoĂŻdes est principalement rĂ©gulĂ©e par le rĂ©cepteur cannabinoĂŻde de type 1 (CB1), un GPCR Ă  sept domaines transmembranaires exprimĂ© de maniĂšre quasi ubiquitaire, situĂ© dans plusieurs types de cellules mais aussi dans diffĂ©rents compartiments subcellulaires, Ă  savoir les mitochondries. Les rĂ©cepteurs CB1 sont Ă©galement la cible principale des phytocannabinoĂŻdes tels que le Δ-9-tĂ©trahydrocannabinol (THC), le principal composĂ© psycho-actif de la plante Cannabis Sativa. Lors d'une activation physiologique ou pharmacologique, les rĂ©cepteurs CB1 modulent l'excitabilitĂ© neuronale et la libĂ©ration de neurotransmetteurs, jouant ainsi un rĂŽle crucial dans la transmission synaptique et la plasticitĂ©. L’un des pools les plus importants de rĂ©cepteurs CB1 dans le cerveau est situĂ© dans le striatum, la structure principale des ganglions de la base (BG). Les BG sont un groupe de noyaux sous-corticaux impliquĂ©s dans les boucles cortico-thalamique-corticales nĂ©cessaires aux comportements adaptatifs tels que la coordination motrice, l’apprentissage des habiletĂ©s motrices et la formation des mĂ©moires procĂ©durales. Le striatum, principalement composĂ© de neurones Ă©pineux moyens (MSNs) GABAergiques, intĂšgre les entrĂ©es glutamatergiques provenant des zones corticales et des noyaux thalamiques et module leur activitĂ© via ses structures cibles. Les MSNs sont divisĂ©s en deux populations neuronales formant les circuits direct et indirect, qui diffĂšrent pour leur rĂ©gion cible, respectivement Substantia Nigra pars reticulata (SNr) et Globus Pallidus externe (GPe). L’activation de ces deux voies induit une rĂ©gulation opposĂ©e des noyaux thalamiques, cible finale des circuits des BG, et leur Ă©quilibre est considĂ©rĂ© comme le mĂ©canisme qui permet un large Ă©ventail de fonctions des BG. Les fibres dopaminergiques, qui proviennent de la Substantia Nigra pars compacta (SNc) sont un modulateur clĂ© des circuits striataux. Le projet prĂ©sentĂ© dans ma thĂšse de doctorat visait Ă  comprendre le rĂŽle des rĂ©cepteurs CB1 situĂ©s dans les diffĂ©rentes voies striatales. En particulier, en utilisant des manipulations virales et/ou gĂ©nĂ©tiques pour cibler les rĂ©cepteurs CB1 striataux, nous avons Ă©tudiĂ© leur implication dans l’action du THC ou de l’amphĂ©tamine, qui sont connus pour agir sur la physiologie striatale. De maniĂšre intĂ©ressante, nous avons trouvĂ© une implication spĂ©cifique des rĂ©cepteurs CB1 situĂ©s dans la voie directe ou indirecte dans la mĂ©diation des effets comportementaux et synaptiques de ces drogues. De plus, nous avons constatĂ© qu’au sein d’un mĂȘme circuit cĂ©rĂ©bral, diffĂ©rents pools subcellulaires de rĂ©cepteurs CB1 sont impliquĂ©s dans diffĂ©rentes fonctions neurophysiologiques (libĂ©ration de neurotransmetteur ou neuropeptides), et que leur activation entraĂźne donc des effets synaptiques et comportementaux diffĂ©rents. Nos rĂ©sultats mettent en Ă©vidence des nouveaux rĂŽles spĂ©cifiques des rĂ©cepteurs CB1 en fonction de leur localisation, du circuit et/ou des compartiments subcellulaires, dans la mĂ©diation de l’action des drogues d’abus, reprĂ©sentant une nouvelle cible pour des traitements spĂ©cifiquesThe endocannabinoid system (ECS) is a neuromodulatoy network involved in a wide range of physiological functions. ECS comprises endocannabinoids, receptors, and enzymes involved in their synthesis and degradation. In the CNS the action of endocannabinoids is mainly mediated by the cannabinoid type-1 (CB1) receptor, a seven-transmembrane GPCR expressed almost ubiquitously, located in several cell types but also in subcellular compartments, i.e. mitochondria and plasma membranes. CB1 receptors are also the main target of phytocannabinoids such as Δ-9-tetrahydrocannabinol (THC), the main psycho-active compound of the plant Cannabis Sativa. Upon physiological or pharmacological activation, CB1 receptors can modulate neuronal excitability and neurotransmitter release, playing a crucial role in the regulation of synaptic transmission and plasticity. One of the highest pools of CB1 receptors in the brain is located in the striatum, the main structure of Basal Ganglia (BG). BG are a group of subcortical nuclei involved in cortico-thalamic-cortical loops necessary for adaptive behaviors such as motor coordination, motor skills learning, and procedural memory formations. The striatum, mainly composed by GABAergic medium spiny projection neurons (MSNs), represents the input structure of BG receiving glutamatergic inputs rising from cortical areas and thalamic nuclei. MSNs are segregated into two neuronal subpopulations forming the direct and indirect pathways, which project to the Substantia Nigra pars reticulata (SNr) or the external segment of the Globus Pallidus (GPe) respectively. The activation of these two pathways induces opposite regulation of thalamic nuclei, the final target of BG circuits, and their balance is thought to be the mechanism underlying the wide range of BG functions. Key modulators of BG circuits are dopaminergic fibers which originate from Substantia Nigra pars compacta (SNc) and exert opposite effects on MSNs belonging to direct or indirect pathway. However, the involvement of the ECS in the modulation of striatal activity and functions is poorly investigated. The project presented in my PhD thesis aimed at understand the distinct role of CB1 receptors in direct or indirect striatal MSNs. In particular, using viral and/or genetic manipulations to specifically target striatal CB1 receptors, we investigated the involvement of these receptors in mediating the action of THC or amphetamine, which are known to act on striatal physiology. Interestingly, we found a specific involvement of CB1 receptors located in direct vs indirect striatal pathways in mediating the behavioral effects of these drugs. Within the same brain circuit different subcellular pools of CB1 receptors are involved in different neurophysiological functions (neurotransmitter vs neuropeptide release), and therefore their activation mediates different synaptic and behavioral effects. Our results highlight new specific roles for CB1 receptors depending on their location, circuit and/or subcellular compartments, in mediating the action of drugs of abuse, representing a new target for specific treatment

    Striatopallidal cannabinoid type-1 receptors mediate amphetamine-induced sensitization

    No full text
    Repeated exposure to psychostimulants, such as amphetamine, causes a long-lasting enhancement in the behavioral responses to the drug, called behavioral sensitization.1 This phenomenon involves several neuronal systems and brain areas, among which the dorsal striatum plays a key role.2 The endocannabinoid system (ECS) has been proposed to participate in this effect, but the neuronal basis of this interaction has not been investigated.3 In the CNS, the ECS exerts its functions mainly acting through the cannabinoid type-1 (CB1) receptor, which is highly expressed at terminals of striatal medium spiny neurons (MSNs) belonging to both the direct and indirect pathways.4 In this study, we show that, although striatal CB1 receptors are not involved in the acute response to amphetamine, the behavioral sensitization and related synaptic changes require the activation of CB1 receptors specifically located at striatopallidal MSNs (indirect pathway). These results highlight a new mechanism of psychostimulant sensitization, a phenomenon that plays a key role in the health-threatening effects of these drugs

    Vulnerable newborn types: analysis of subnational, population‐based birth cohorts for 541 285 live births in 23 countries, 2000–2021

    Get PDF
    Objective: To examine prevalence of novel newborn types among 541 285 live births in 23 countries from 2000 to 2021. Design: Descriptive multi-country secondary data analysis. Setting: Subnational, population-based birth cohort studies (n = 45) in 23 low- and middle-income countries (LMICs) spanning 2000–2021. Population: Liveborn infants. Methods: Subnational, population-based studies with high-quality birth outcome data from LMICs were invited to join the Vulnerable Newborn Measurement Collaboration. We defined distinct newborn types using gestational age (preterm [PT], term [T]), birthweight for gestational age using INTERGROWTH-21st standards (small for gestational age [SGA], appropriate for gestational age [AGA] or large for gestational age [LGA]), and birthweight (low birthweight, LBW [<2500 g], nonLBW) as ten types (using all three outcomes), six types (by excluding the birthweight categorisation), and four types (by collapsing the AGA and LGA categories). We defined small types as those with at least one classification of LBW, PT or SGA. We presented study characteristics, participant characteristics, data missingness, and prevalence of newborn types by region and study. Results: Among 541 285 live births, 476 939 (88.1%) had non-missing and plausible values for gestational age, birthweight and sex required to construct the newborn types. The median prevalences of ten types across studies were T+AGA+nonLBW (58.0%), T+LGA+nonLBW (3.3%), T+AGA+LBW (0.5%), T+SGA+nonLBW (14.2%), T+SGA+LBW (7.1%), PT+LGA+nonLBW (1.6%), PT+LGA+LBW (0.2%), PT+AGA+nonLBW (3.7%), PT+AGA+LBW (3.6%) and PT+SGA+LBW (1.0%). The median prevalence of small types (six types, 37.6%) varied across studies and within regions and was higher in Southern Asia (52.4%) than in Sub-Saharan Africa (34.9%). Conclusions: Further investigation is needed to describe the mortality risks associated with newborn types and understand the implications of this framework for local targeting of interventions to prevent adverse pregnancy outcomes in LMICs

    Vulnerable newborn types: analysis of subnational, population‐based birth cohorts for 541 285 live births in 23 countries, 2000–2021

    No full text
    Setting: Subnational, population-based birth cohort studies (n = 45) in 23 low-and middle-income countries (LMICs) spanning 2000–2021. Population: Liveborn infants. Methods: Subnational, population-based studies with high-quality birth outcome data from LMICs were invited to join the Vulnerable Newborn Measurement Collaboration. We defined distinct newborn types using gestational age (preterm [PT], term [T]), birthweight for gestational age using INTERGROWTH-21st standards (small for gestational age [SGA], appropriate for gestational age [AGA] or large for gestational age [LGA]), and birthweight (low birthweight, LBW [<2500 g], non- LBW) as ten types (using all three outcomes), six types (by excluding the birthweight categorisation), and four types (by collapsing the AGA and LGA categories). We defined small types as those with at least one classification of LBW, PT or SGA. We presented study characteristics, participant characteristics, data missingness, and prevalence of newborn types by region and study. Results: Among 541 285 live births, 476 939 (88.1%) had non-missing and plausible values for gestational age, birthweight and sex required to construct the newborn types. The median prevalences of ten types across studies were T+AGA+nonLBW (58.0%), T+LGA+nonLBW (3.3%), T+AGA+LBW (0.5%), T+SGA+nonLBW (14.2%), T+SGA+LBW (7.1%), PT+LGA+nonLBW (1.6%), PT+LGA+LBW (0.2%), PT+AGA+nonLBW (3.7%), PT+AGA+LBW (3.6%) and PT+SGA+LBW (1.0%). The median prevalence of small types (six types, 37.6%) varied across studies and within regions and was higher in Southern Asia (52.4%) than in Sub-Saharan Africa (34.9%). Conclusions: Further investigation is needed to describe the mortality risks associated with newborn types and understand the implications of this framework for local targeting of interventions to prevent adverse pregnancy outcomes in LMICs
    corecore