16 research outputs found

    Global profiling of viral and cellular non-coding RNAs in Epstein-Barr virus-induced lymphoblastoid cell lines and released exosome cargos.

    Get PDF
    Abstract The human EBV-transformed lymphoblastoid cell line (LCL), obtained by infecting peripheral blood monocular cells with Epstein–Barr Virus, has been extensively used for human genetic, pharmacogenomic, and immunologic studies. Recently, the role of exosomes has also been indicated as crucial in the crosstalk between EBV and the host microenvironment. Because the role that the LCL and LCL exosomal cargo might play in maintaining persistent infection, and since little is known regarding the non-coding RNAs of LCL, the aim of our work was the comprehensive characterization of this class of RNA, cellular and viral miRNAs, and cellular lncRNAs, in LCL compared with PBMC derived from the same donors. In this study, we have demonstrated, for the first time, that all the viral miRNAs expressed by LCL are also packaged in the exosomes, and we found that two miRNAs, ebv-miR-BART3 and ebv-miR-BHRF1-1, are more abundant in the exosomes, suggesting a microvescicular viral microRNA transfer. In addition, lncRNA profiling revealed that LCLs were enriched in lncRNA H19 and H19 antisense, and released these through exosomes, suggesting a leading role in the regulation of the tumor microenvironment

    A machine-learning based bio-psycho-social model for the prediction of non-obstructive and obstructive coronary artery disease

    Get PDF
    Background: Mechanisms of myocardial ischemia in obstructive and non-obstructive coronary artery disease (CAD), and the interplay between clinical, functional, biological and psycho-social features, are still far to be fully elucidated. Objectives: To develop a machine-learning (ML) model for the supervised prediction of obstructive versus non-obstructive CAD. Methods: From the EVA study, we analysed adults hospitalized for IHD undergoing conventional coronary angiography (CCA). Non-obstructive CAD was defined by a stenosis < 50% in one or more vessels. Baseline clinical and psycho-socio-cultural characteristics were used for computing a Rockwood and Mitnitski frailty index, and a gender score according to GENESIS-PRAXY methodology. Serum concentration of inflammatory cytokines was measured with a multiplex flow cytometry assay. Through an XGBoost classifier combined with an explainable artificial intelligence tool (SHAP), we identified the most influential features in discriminating obstructive versus non-obstructive CAD. Results: Among the overall EVA cohort (n = 509), 311 individuals (mean age 67 ± 11 years, 38% females; 67% obstructive CAD) with complete data were analysed. The ML-based model (83% accuracy and 87% precision) showed that while obstructive CAD was associated with higher frailty index, older age and a cytokine signature characterized by IL-1β, IL-12p70 and IL-33, non-obstructive CAD was associated with a higher gender score (i.e., social characteristics traditionally ascribed to women) and with a cytokine signature characterized by IL-18, IL-8, IL-23. Conclusions: Integrating clinical, biological, and psycho-social features, we have optimized a sex- and gender-unbiased model that discriminates obstructive and non-obstructive CAD. Further mechanistic studies will shed light on the biological plausibility of these associations. Clinical trial registration: NCT02737982

    Prolonged higher dose methylprednisolone vs. conventional dexamethasone in COVID-19 pneumonia: a randomised controlled trial (MEDEAS)

    Get PDF
    Dysregulated systemic inflammation is the primary driver of mortality in severe COVID-19 pneumonia. Current guidelines favor a 7-10-day course of any glucocorticoid equivalent to dexamethasone 6 mg·day-1. A comparative RCT with a higher dose and a longer duration of intervention was lacking

    Immune Response after the Fourth Dose of SARS-CoV-2 mRNA Vaccine Compared to Natural Infection in Three Doses’ Vaccinated Solid Organ Transplant Recipients

    No full text
    Solid organ transplant recipients (SOTRs) show higher rates of COVID-19 breakthrough infection than the general population, and nowadays, vaccination is the key preventative strategy. Nonetheless, SOTRs show lower vaccine efficacy for the prevention of severe COVID-19. Moreover, the emergence of new SARS-CoV-2 variants of concern has highlighted the need to improve vaccine-induced immune responses by the administration of repeated booster doses. In this study, we analyzed the humoral and cellular responses in a cohort of 25 SOTRs, including 15 never-infected SOTRs who received the fourth dose of the mRNA vaccine and 10 SOTRs who contracted SARS-CoV-2 infection after the third dose. We analyzed the serum IgG and IgA levels through CLIA or ELISA, respectively, and the Spike-specific T cells by ELISpot assay. We report a significant increase in anti-Spike IgG and no differences in IgA secretion in both groups of patients before and after the booster dose or the natural infection. Still, we show higher IgA levels in recovered SOTRs compared to the fourth dose recipients. Conversely, we show the maintenance of a positive Spike-specific T-cell response in SOTRs who received the fourth dose, which, instead, was significantly increased in SOTRs who contracted the infection. Our results suggest that the booster, either through the fourth dose or natural infection, in vulnerable poor responder SOTRs, improves both humoral and cellular-specific immune responses against SARS-CoV-2

    Specific Anti-SARS-CoV-2 Humoral and Cellular Immune Responses After Booster Dose of BNT162b2 Pfizer-BioNTech mRNA-Based Vaccine: Integrated Study of Adaptive Immune System Components

    No full text
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), is modifying human activity all over the world with significant health and economic burden. The advent of the SARS-CoV-2 pandemic prompted the scientific community to learn the virus dynamics concerning transmissibility, epidemiology, and usefulness of vaccines in fighting emerging health hazards. Pieces of evidence suggest that the first and second doses of mRNA vaccines induce a significant antibody response in vaccinated subjects or patients who recovered from SARS-CoV-2 infection, demonstrating the importance of the previously formed memory. The aim of this work has been to investigate the effects of BNT162b2 Pfizer-BioNTech mRNA-based vaccine booster dose in a cohort of 11 uninfected immunocompetent (ICs), evaluating the humoral and cellular responses, with more carefulness on memory B and T cells. Our findings underscore the potential benefit of the third dose of mRNA vaccine on the lifespan of memory B and T cells, suggesting that booster doses could increase protection against SARS-CoV-2 infection

    Extracellular Vesicle-Derived microRNAs of Human Wharton’s Jelly Mesenchymal Stromal Cells May Activate Endogenous VEGF-A to Promote Angiogenesis

    No full text
    Despite low levels of vascular endothelial growth factor (VEGF)-A, the secretome of human Wharton’s jelly (WJ) mesenchymal stromal cells (MSCs) effectively promoted proangiogenic responses in vitro, which were impaired upon the depletion of small (~140 nm) extracellular vesicles (EVs). The isolated EVs shared the low VEGF-A profile of the secretome and expressed five microRNAs, which were upregulated compared to fetal dermal MSC-derived EVs. These upregulated microRNAs exclusively targeted the VEGF-A gene within 54 Gene Ontology (GO) biological processes, 18 of which are associated with angiogenesis. Moreover, 15 microRNAs of WJ-MSC-derived EVs were highly expressed (Ct value ≤ 26) and exclusively targeted the thrombospondin 1 (THBS1) gene within 75 GO biological processes, 30 of which are associated with the regulation of tissue repair. The relationship between predicted microRNA target genes and WJ-MSC-derived EVs was shown by treating human umbilical-vein endothelial cells (HUVECs) with appropriate doses of EVs. The exposure of HUVECs to EVs for 72 h significantly enhanced the release of VEGF-A and THBS1 protein expression compared to untreated control cells. Finally, WJ-MSC-derived EVs stimulated in vitro tube formation along with the migration and proliferation of HUVECs. Our findings can contribute to a better understanding of the molecular mechanisms underlying the proangiogenic responses induced by human umbilical cord-derived MSCs, suggesting a key regulatory role for microRNAs delivered by EVs

    Analysis of the Specific Immune Response after the Third Dose of mRNA COVID-19 Vaccines in Organ Transplant Recipients: Possible Spike-S1 Reactive IgA Signature in Protection from SARS-CoV-2 Infection

    No full text
    Background: Several studies have indicated that anti-SARS-CoV-2 mRNA vaccinations are less effective in inducing robust immune responses among solid organ transplant recipients (SOTRs) compared with the immunocompetent. The third dose of vaccine in SOTRs showed promising results of immunogenicity, even though clinical studies have suggested that immunocompromised subjects are less likely to build a protective immune response against SARS-CoV-2 resulting in lower vaccine efficacy for the prevention of severe COVID-19. Methods: Serological IgG and IgA were analyzed through CLIA or ELISA, respectively, while Spike-specific T cells were detected by ELISpot assay after the second and third dose of vaccine in 43 SOTRs. Results: The third dose induced an improvement in antibody response against SARS-CoV-2. We also reported a strong correlation between specific humoral and cellular responses after the third dose, even though we did not see significant changes in the magnitude of the SARS-CoV-2-specific T cell response. SOTRs who contracted the SARS-CoV-2 infection after the third dose, despite eliciting a positive IgG response, failed to mount an anti-Spike-S1 IgA response, both after the third dose and after SARS-CoV-2 infection. Conclusions: We can conclude that serum IgA detection can be helpful, along with IgG detection, for the evaluation of vaccine efficacy, principally in fragile subjects at high risk of infection

    Long-Term Effectiveness of BNT162b2 Pfizer-BioNTech mRNA-Based Vaccine on B Cell Compartment: Efficient Recall of SARS-CoV-2-Specific Memory B Cells

    No full text
    At present, there is a lack of clinical evidence about the impact and long-term durability of the immune response induced by the third dose of mRNA vaccines. In this study, we followed up the B cell compartment behavior in a cohort of immunocompetent individuals three and six months after the third dose of vaccine. During this period, some subjects contracted the virus. In uninfected vaccinated subjects, we did not report any changes in serum spike-specific IgG levels, with a significant reduction in IgA. Instead, subjects recovered from natural infection showed a significant increase in both specific IgG and IgA. Moreover, we showed a time-related decrease in IgG neutralizing potential to all SARS-CoV-2 variants of concern (VOC) in uninfected compared to recovered subjects, who displayed an increased neutralizing ability, particularly against the omicron variant. Finally, we underlined the presence of a pool of SARS-CoV-2-specific B cells in both groups that are prone to respond to restimulation, as demonstrated by their ability to differentiate into plasma cells and to produce anti-SARS-CoV-2-specific immunoglobulins. These data lead us to assert the long-term effectiveness of the BNT162b2 vaccine in contrasting the severe form of the pathology and prevent COVID-19-associated hospitalization

    iRhom2 regulates ectodomain shedding and surface expression of the major histocompatibility complex (MHC) class I

    Get PDF
    Proteolytic release of transmembrane proteins from the cell surface, the so called ectodomain shedding, is a key process in inflammation. Inactive rhomboid 2 (iRhom2) plays a crucial role in this context, in that it guides maturation and function of the sheddase ADAM17 (a disintegrin and metalloproteinase 17) in immune cells, and, ultimately, its ability to release inflammatory mediators such as tumor necrosis factor alpha (TNF alpha). Yet, the macrophage sheddome of iRhom2/ADAM17, which is the collection of substrates that are released by the proteolytic complex, is only partly known. In this study, we applied high-resolution proteomics to murine and human iRhom2-deficient macrophages for a systematic identification of substrates, and therefore functions, of the iRhom2/ADAM17 proteolytic complex. We found that iRhom2 loss suppressed the release of a group of transmembrane proteins, including known (e.g. CSF1R) and putative novel ADAM17 substrates. In the latter group, shedding of major histocompatibility complex class I molecules (MHC-I) was consistently reduced in both murine and human macrophages when iRhom2 was ablated. Intriguingly, it emerged that in addition to its shedding, iRhom2 could also control surface expression of MHC-I by an undefined mechanism. We have demonstrated the biological significance of this process by using an in vitro model of CD8+ T-cell (CTL) activation. In this model, iRhom2 loss and consequent reduction of MHC-I expression on the cell surface of an Epstein-Barr virus (EBV)-transformed lymphoblastoid cell line dampened activation of autologous CTLs and their cell-mediated cytotoxicity. Taken together, this study uncovers a new role for iRhom2 in controlling cell surface levels of MHC-I by a dual mechanism that involves regulation of their surface expression and ectodomain shedding

    Distinguishing Features of Autoimmune Gastritis Depending on Previous Helicobacter pylori Infection or Positivity to Anti-Parietal Cell Antibodies: Results From the Autoimmune gastRitis Italian netwOrk Study grOup (ARIOSO)

    No full text
    Introduction: To describe the clinical features and the risk of developing gastric tumors in patients with autoimmune gastritis (AIG). Methods: This was a retrospective, longitudinal, multicenter study conducted at 8 Italian tertiary referral centers. We retrieved clinical data from all histologically proven patients with AIG. Differences between Helicobacter pylori -exposed vs H. pylori -naive and anti-parietal cell antibody (PCA)-positive vs PCA-negative patients were investigated. The rate of gastric adenocarcinoma and type 1 gastric neuroendocrine neoplasm (gNEN) was assessed. A multivariable model for factors associated with gNEN was fitted. Results: A total of 1,598 patients with AIG (median age 58 years, interquartile range 46-68; F:M ratio 2.7:1) were included. H. pylori -naive patients were more likely to have a first-degree family history of AIG (14.7% vs 8.9%; P = 0.012), type 1 diabetes mellitus (4.9% vs 2.3%; P = 0.025), and pernicious anemia (30.9% vs 21.1%; P = 0.003). PCA-positive patients had significantly more associated autoimmune diseases (59.0% vs 42.9%; P < 0.001) and were more likely to have been diagnosed by a case-finding strategy (15.3% vs 2.6%; P < 0.001). Overall, 15 cases (0.9%) of gastric adenocarcinoma and 153 cases (9.6%) of gNEN occurred, with a global rate of 0.12 (95% confidence interval [CI] 0.07-0.20) and 1.22 (95% CI 1.03-1.42) per 100 person/year, respectively. Having a vitamin B12/iron deficiency manifestation at AIG diagnosis was associated with a 16.44 (95% CI 9.94-27.20 P < 0.001) hazard ratio of gNEN. Discussion: The "pure" AIG pattern has typical features of an autoimmune disease and seems to be unrelated to H. pylori . In a tertiary referral setting, the risk of developing overt gastric adenocarcinoma is low, while patients with vitamin B12 deficiency complications at onset may benefit from a more intense endoscopic follow-up for early gNEN detection
    corecore