24 research outputs found

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Targeting the DNA replication checkpoint by pharmacologic inhibition of Chk1 kinase : a strategy to sensitize APC mutant colon cancer cells to 5-fluorouracil chemotherapy

    No full text
    5-fluorouracil (5-FU) is the first line component used in colorectal cancer (CRC) therapy however even in combination with other chemotherapeutic drugs recurrence is common. Mutations of the adenomatous polyposis coli (APC) gene are considered as the initiating step of transformation in familial and sporadic CRCs. We have previously shown that APC regulates the cellular response to DNA replication stress and recently hypothesized that APC mutations might therefore influence 5-FU resistance. To test this, we compared CRC cell lines and show that those expressing truncated APC exhibit a limited response to 5-FU and arrest in G1/S-phase without undergoing lethal damage, unlike cells expressing wild-type APC. In SW480 APC-mutant CRC cells, 5-FU-dependent apoptosis was restored after transient expression of full length APC, indicating a direct link between APC and drug response. Furthermore, we could increase sensitivity of APC truncated cells to 5-FU by inactivating the Chk1 kinase using drug treatment or siRNA-mediated knockdown. Our findings identify mutant APC as a potential tumor biomarker of resistance to 5-FU, and importantly we show that APC-mutant CRC cells can be made more sensitive to 5-FU by use of Chk1 inhibitors.12 page(s

    Adenomatous polyposis coli protein regulates the cellular response to DNA replication stress

    No full text
    The adenomatous polyposis coli (APC) tumor suppressor traffics between nucleus and cytoplasm to perform distinct functions. Here we identify a specific role for APC in the DNA replication stress response. The silencing of APC caused an accumulation of asynchronous cells in early S phase and delayed S phase progression in cells released from hydroxyurea-mediated replication arrest. Immunoprecipitation assays revealed a selective binding of APC to replication protein A 32kDa subunit (RPA32), and the APC-RPA32 complex increased at chromatin after hydroxyurea treatment. Interestingly, APC knock-down prevented accumulation at chromatin of the stress-induced S33- and S29-phosphorylated forms of RPA32, and reduced the expression of ATR-phosphorylated forms of S317-phospho-Chk1 and Îł-H2AX. Using RPA32-inducible cells we showed that reconstitution of RPA32 diminished the S-phase delay caused by loss of APC. In contrast to full-length APC, the truncated APC mutant protein expressed in SW480 colon cancer cells was impaired in its binding and regulation of RPA32, and failed to regulate cell cycle after replication stress. We propose that APC associates with RPA at stalled DNA replication forks and promotes the ATR-dependent phosphorylation of RPA32, Chk1 and Îł-H2AX in response to DNA replication stress, thereby influencing the rate of re-entry into the cell cycle.11 page(s

    APC binds the Miro/Milton motor complex to stimulate transport of mitochondria to the plasma membrane

    No full text
    Mutations in adenomatous polyposis coli (APC) disrupt regulation of Wnt signaling, mitosis, and the cytoskeleton. We describe a new role for APC in the transport of mitochondria. Silencing of wild-type APC by small interfering RNA caused mitochondria to redistribute from the cell periphery to the perinuclear region. We identified novel APC interactions with the mitochondrial kinesin-motor complex Miro/Milton that were mediated by the APC C-terminus. Truncating mutations in APC abolished its ability to bind Miro/Milton and reduced formation of the Miro/Milton complex, correlating with disrupted mitochondrial distribution in colorectal cancer cells that could be recovered by reconstitution of wild-type APC. Using proximity ligation assays, we identified endogenous APC-Miro/Milton complexes at mitochondria, and live-cell imaging showed that loss of APC slowed the frequency of anterograde mitochondrial transport to the membrane. We propose that APC helps drive mitochondria to the membrane to supply energy for cellular processes such as directed cell migration, a process disrupted by cancer mutations.17 page(s

    IQGAP1 translocates to the nucleus in early S-phase and contributes to cell cycle progression after DNA replication arrest

    No full text
    IQGAP1 is a plasma membrane-associated protein and an important regulator of the actin cytoskeleton, contributing to cell migration, polarity and adhesion. In this study, we demonstrate the nuclear translocation of IQGAP1 using confocal microscopy and cell fractionation. Moreover, we identify a specific pool of IQGAP1 that accumulates in the nucleus during late G1-early S phase of the cell cycle. The nuclear targeting of IQGAP1 was facilitated by N- and C-terminal sequences, and its ability to slowly shuttle between nucleus and cytoplasm/membrane was partly regulated by the CRM1 export receptor. The inhibition of GSK-3β also stimulated nuclear localization of IQGAP1. The dramatic nuclear accumulation of IQGAP1 observed when cells were arrested in G1/S phase suggested a possible role in cell cycle regulation. In support of this, we used immunoprecipitation assays to show that the nuclear pool of IQGAP1 in G1/S-arrested cells associates with DNA replication complex factors RPA32 and PCNA. More important, the siRNA-mediated silencing of IQGAP1 significantly delayed cell cycle progression through S phase and G2/M in NIH 3T3 cells released from thymidine block. Our findings reveal an unexpected regulatory pathway for IQGAP1, and show that a pool of this cytoskeletal regulator translocates into the nucleus in late G1/early S phase to stimulate DNA replication and progression of the cell cycle.9 page(s

    Tankyrase inhibitors stimulate the ability of tankyrases to bind axin and drive assembly of β-catenin degradation-competent axin puncta

    No full text
    Activation of the wnt signaling pathway is a major cause of colon cancer development. Tankyrase inhibitors (TNKSi) have recently been developed to block the wnt pathway by increasing axin levels to promote degradation of the wnt-regulator β-catenin. TNKSi bind to the PARP (poly(ADP)ribose polymerase) catalytic region of tankyrases (TNKS), preventing the PARylation of TNKS and axin that normally control axin levels through ubiquitination and degradation. TNKSi treatment of APC-mutant SW480 colorectal cancer cells can induce axin puncta which act as sites for assembly of β-catenin degradation complexes, however this process is poorly understood. Using this model system, we found that siRNA knockdown of TNKSs 1 and 2 actually blocked the ability of TNKSi drugs to induce axin puncta, revealing that puncta formation requires both the expression and the inactivation of TNKS. Immunoprecipitation assays showed that treatment of cells with TNKSi caused a strong increase in the formation of axin-TNKS complexes, correlating with an increase in insoluble or aggregated forms of TNKS/axin. The efficacy of TNKSi was antagonized by proteasome inhibitors, which stabilized the PARylated form of TNKS1 and reduced TNKSimediated assembly of axin-TNKS complexes and puncta. We hypothesise that TNKSi act to stimulate TNKS oligomerization and assembly of the TNKS-axin scaffold that form puncta. These new insights may help in optimising the future application of TNKSi in anticancer drug design.19 page(s

    APC functions at the centrosome to stimulate microtubule growth

    No full text
    The adenomatous polyposis coli (APC) tumor suppressor is multi-functional. APC is known to localize at the centrosome, and in mitotic cells contributes to formation of the mitotic spindle. To test whether APC contributes to nascent microtubule (MT) growth at interphase centrosomes, we employed MT regrowth assays in U2OS cells to measure MT assembly before and after nocodazole treatment and release. We showed that siRNA knockdown of full-length APC delayed both initial MT aster formation and MT elongation/regrowth. In contrast, APC-mutant SW480 cancer cells displayed a defect in MT regrowth that was unaffected by APC knockdown, but which was rescued by reconstitution of full-length APC. Our findings identify APC as a positive regulator of centrosome MT initial assembly and suggest that this process is disrupted by cancer mutations. We confirmed that full-length APC associates with the MT-nucleation factor Îł-tubulin, and found that the APC cancer-truncated form (1-1309) also bound to Îł-tubulin through APC amino acids 1-453. While binding to Îł-tubulin may help target APC to the site of MT nucleation complexes, additional C-terminal sequences of APC are required to stimulate and stabilize MT growth.9 page(s

    APC as a mobile scaffold : regulation and function at the nucleus, centrosomes, and mitochondria

    No full text
    Genetic mutations of adenomatous polyposis coli (APC) predispose to high risk of human colon cancer. APC is a large tumor suppressor protein and truncating mutations disrupt its normal roles in regulating cell migration, DNA replication/repair, mitosis, apoptosis, and turnover of oncogenic β-catenin. APC is targeted to multiple subcellular sites, and here we discuss recent evidence implicating novel protein interactions and functions of APC in the nucleus and at centrosomes and mitochondria. The ability of APC to shuttle between these and other cell locations is hypothesized to be integral to its cellular function.6 page(s
    corecore