2,171 research outputs found

    Antimicrobial properties of membrane-active dodecapeptides derived from MSI-78

    Get PDF
    Antimicrobial peptides (AMPs) are a class of broad-spectrum antibiotics known by their ability to disrupt bacterial membranes and their low tendency to induce bacterial resistance, arising as excellent candidates to fight bacterial infections. In this study we aimed at designing short 12-mer AMPs, derived from a highly effective and broad spectrum synthetic AMP, MSI-78 (22 residues), by truncating this peptide at the N- and/or C-termini while spanning its entire sequence with 1 amino add (aa) shifts. These designed peptides were evaluated regarding antimicrobial activity against selected gram-positive Staphylococcus strains and the gram-negative Pseudomonas aeruginosa (P. aeruginosa). The short 12-mer peptide CEM1 (GIGMFLKKAKICF) was identified as an excellent candidate to fight P. aeruginosa infections as it displays antimicrobial activity against this strain and selectivity, with negligible toxicity to mammalian cells even at high concentrations. However, in general most of the short 12-mer peptides tested showed a reduction in antimicrobial activity, an effect that was more pronounced for gram-positive Staphylococcus strains. Interestingly, CEM1 and a highly similar peptide differing by only one aa-shift (CEM2: IGKFLKKAKICFG), showed a remarkably contrasting AMP activity. These two peptides were chosen for a more detailed study regarding their mechanism of action, using several biophysical assays and simple membrane models that mimic the mammalian and bacterial lipid composition. We confirmed the correlation between peptide helicity and antimicrobial activity and propose a mechanism of action based on the disruption of the bacterial membrane permeability barrier

    Electrochromic device composed of a Di-Urethanesil electrolyte incorporating lithium triflate and 1-Butyl-3-Methylimidazolium chloride

    Get PDF
    A di-urethane cross-linked poly(oxyethylene)/silica hybrid matrix [di-urethanesil, d-Ut(600)], synthesized by the sol-gel process, was doped with lithium triflate (LiCF3SO3) and the 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) ionic liquid. The as-produced xerogel film is amorphous, transparent, flexible, homogeneous, hydrophilic, and has low nanoscale surface roughness. It exhibits an ionic conductivity of 3.64 x 10(-6) and 5.00 x 10(-4) S cm(-1) at 21 and 100 degrees C, respectively. This material was successfully tested as electrolyte in an electrochromic device (ECD) with the glass/ITO/a-WO3/d-Ut(600)(10)LiCF3SO3[Bmim]Cl/c-NiO/ITO/glass configuration, where a-WO3 and c-NiO stand for amorphous tungsten oxide and crystalline nickel oxide, respectively. The device demonstrated attractive electro-optical performance: fast response times (1-2 s for coloring and 50 s for bleaching), good optical memory [loss of transmittance (T) of only 41% after 3 months, at 555 nm], four mode modulation [bright mode (+3.0 V, T = 77% at 555 nm), semi-bright mode (-1.0 V, T = 60% at 555 nm), dark mode (-1.5 V, T = 38 % at 555 nm), and very dark mode (-2.0 V, T = 11% and -2.5 V, T = 7% at 555 nm)], excellent cycling stability denoting improvement with time, and high coloration efficiency [CEin = -6727 cm(2) C-1 (32th cycle) and CEout = +2794 cm(2) C-1 (480th cycle), at 555 nm].The authors are grateful to Fundacao para a Ciencia e a Tecnologia (FCT) and when applicable by FEDER under the PT2020 Partnership Agreement for financial support under contracts PEst-OE/SAU/UI0709/2014, UID/Multi/00709/2013, UID/QUI/00686/2016, UID/QUI/00686/2018, UID/QUI/00686/2019, PEst-OE/QUI/UI0616/2016, FCOMP-01-0124-FEDER037271, UID/CTM/50011/2013, LUMECD project (POCI01-0145-FEDER-016884 and PTDC/CTM-NAN/0956/2014), UniRCell project (SAICTPAC/0032/2015 and POCI-01-0145FEDER-016422). RP and SN acknowledge FCT-MCTES for grants (SFRH/BPD/87759/2012 and LUMECD, respectively). RP thanks FCT-UM for the contracts in the scope of Decreto-Lei 57/2016 and 57/2017. MF acknowledges FCTUTAD for the contract in the scope of Decreto-Lei 57/2016 -Lei 57/2017. HG acknowledges projects POCI-010145-FEDER-030858 and PTDC/BTM-MAT/30858/2017 for financial support

    A 17-mer Membrane-Active MSI-78 Derivative with Improved Selectivity toward Bacterial Cells

    Get PDF
    Antimicrobial peptides are widely recognized as an excellent alternative to conventional antibiotics. MSI-78, a highly effective and broad spectrum AMP, is one of the most promising AMPs for clinical application. In this study, we have designed shorter derivatives of MSI-78 with the aim of improving selectivity while maintaining antimicrobial activity. Shorter 17-mer derivatives were created by truncating MSI-78 at the N- and/or C-termini, while spanning MSI-78 sequence. Despite the truncations made, we found a 17-mer peptide, MSI-78(4-20) (KFLKKAKKFGKAFVKIL), which was demonstrated to be as effective as MSI-78 against the Gram-positive Staphylococcus strains tested and the Gram-negative Pseudomonas aeruginosa. This shorter derivative is more selective toward bacterial cells as it was less toxic to erythrocytes than MSI-78, representing an improved version of the lead peptide. Biophysical studies support a mechanism of action for MSI-78(4-20) based on the disruption of the bacterial membrane permeability barrier, which in turn leads to loss of membrane integrity and ultimately to cell death. These features point to a mechanism of action similar to the one described for the lead peptide MSI-78

    A Predictive Model of Postnatal Surgical Intervention in Children With Prenatally Detected Congenital Anomalies of the Kidney and Urinary Tract

    Get PDF
    The aim of this study was to identify predictive factors and develop a model to assess individualized risk of postnatal surgical intervention in patients with antenatal hydronephrosis. This is a retrospective cohort study of 694 infants with prenatally detected congenital anomalies of kidney and urinary tract with a median follow-up time of 37 months. The main event of interest was postnatal surgical intervention. A predictive model was developed using Cox model with internal validation by bootstrap technique. Of 694 patients, 164 (24%) infants underwent surgical intervention in a median age of 7.8 months. Predictors of the surgical intervention in the model were: baseline glomerular filtration rate, associated hydronephrosis, presence of renal damage and the severity of renal pelvic dilatation. The optimism corrected c statistic for the model was 0.84 (95%CI, 0.82–0.87). The predictive model may contribute to identify infants at high risk for surgical intervention. Further studies are necessary to validate the model in patients from other settings

    Heterogeneous contributions of change in population distribution of body mass index to change in obesity and underweight

    Get PDF
    From 1985 to 2016, the prevalence of underweight decreased, and that of obesity and severe obesity increased, in most regions, with significant variation in the magnitude of these changes across regions. We investigated how much change in mean body mass index (BMI) explains changes in the prevalence of underweight, obesity, and severe obesity in different regions using data from 2896 population-based studies with 187 million participants. Changes in the prevalence of underweight and total obesity, and to a lesser extent severe obesity, are largely driven by shifts in the distribution of BMI, with smaller contributions from changes in the shape of the distribution. In East and Southeast Asia and sub-Saharan Africa, the underweight tail of the BMI distribution was left behind as the distribution shifted. There is a need for policies that address all forms of malnutrition by making healthy foods accessible and affordable, while restricting unhealthy foods through fiscal and regulatory restrictions

    Cathepsin K induces platelet dysfunction and affects cell signaling in breast cancer - molecularly distinct behavior of cathepsin K in breast cancer

    Get PDF
    Background: Breast cancer comprises clinically and molecularly distinct tumor subgroups that differ in cell histology and biology and show divergent clinical phenotypes that impede phase III trials, such as those utilizing cathepsin K inhibitors. Here we correlate the epithelial-mesenchymal-like transition breast cancer cells and cathepsin K secretion with activation and aggregation of platelets. Cathepsin K is up-regulated in cancer cells that proteolyze extracellular matrix and contributes to invasiveness. Although proteolytically activated receptors (PARs) are activated by proteases, the direct interaction of cysteine cathepsins with PARs is poorly understood. In human platelets, PAR-1 and -4 are highly expressed, but PAR-3 shows low expression and unclear functions. Methods: Platelet aggregation was monitored by measuring changes in turbidity. Platelets were immunoblotted with anti-phospho and total p38, Src-Tyr-416, FAK-Tyr-397, and TGF beta monoclonal antibody. Activation was measured in a flow cytometer and calcium mobilization in a confocal microscope. Mammary epithelial cells were prepared from the primary breast cancer samples of 15 women with Luminal-B subtype to produce primary cells. Results: We demonstrate that platelets are aggregated by cathepsin K in a dose-dependent manner, but not by other cysteine cathepsins. PARs-3 and -4 were confirmed as the cathepsin K target by immunodetection and specific antagonists using a fibroblast cell line derived from PARs deficient mice. Moreover, through co-culture experiments, we show that platelets activated by cathepsin K mediated the up-regulation of SHH, PTHrP, OPN, and TGF beta in epithelial-mesenchymal-like cells from patients with Luminal B breast cancer. Conclusions: Cathepsin K induces platelet dysfunction and affects signaling in breast cancer cells.Associacao Beneficente de Coleta de Sangue (Colsan)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)Univ Fed Sao Paulo, Dept Gynecol, BR-04024002 Sao Paulo, SP, BrazilCOLSAN, Charitable Assoc Blood Collect, BR-04080006 Sao Paulo, SP, BrazilUniv Fed Sao Paulo, Dept Biophys, BR-04024002 Sao Paulo, SP, BrazilUniv Fed Sao Paulo, Dept Biochem, BR-04024002 Sao Paulo, SP, BrazilAntonio Prudente Fdn, AC Camargo Canc Ctr, AC Camargo Hosp Biobank, Dept Pathol, BR-01509010 Sao Paulo, SP, BrazilUniv Fed Sao Paulo, Cellular Gynecol Lab, Dept Gynecol, Rua Napoleao Barros 608, BR-04024002 Sao Paulo, BrazilUniv Fed Sao Paulo, Dept Gynecol, BR-04024002 Sao Paulo, SP, BrazilUniv Fed Sao Paulo, Dept Biophys, BR-04024002 Sao Paulo, SP, BrazilUniv Fed Sao Paulo, Dept Biochem, BR-04024002 Sao Paulo, SP, BrazilUniv Fed Sao Paulo, Cellular Gynecol Lab, Dept Gynecol, Rua Napoleao Barros 608, BR-04024002 Sao Paulo, BrazilFAPESP: 2012/19780-3FAPESP: 2012/19851-8FAPESP: 2009/53766-5Web of Scienc

    A commercial blend of macroalgae and microalgae promotes digestibility, growth performance, and muscle nutritional value of European seabass (Dicentrarchus labrax L.) juveniles

    Get PDF
    Algae can leverage aquaculture sustainability and improve the nutritional and functional value of fish for human consumption, but may pose challenges to carnivorous fish. This study aimed to evaluate the potential of a commercial blend of macroalgae (Ulva sp. and Gracilaria gracilis) and microalgae (Chlorella vulgaris and Nannochloropsis oceanica) in a plant-based diet up to 6% (dry matter basis) on digestibility, gut integrity, nutrient utilization, growth performance, and muscle nutritional value of European seabass juveniles. Fish (11.3 ± 2.70 g) were fed with isoproteic, isolipidic, and isoenergetic diets: (i) a commercial-type plant-based diet with moderate fishmeal (125 g kg−1 DM basis) and without algae blend (control diet; Algae0), (ii) the control diet with 2% algae blend (Algae2), (iii) the control diet with 4% algae blend (Algae4), and (iv) the control diet with 6% algae blend (Algae6) for 12 weeks. The digestibility of experimental diets was assessed in a parallel study after 20 days. Results showed that most nutrients and energy apparent digestibility coefficients were promoted by algae blend supplementation, with a concomitant increase in lipid and energy retention efficiencies. Growth performance was significantly promoted by the algae blend, the final body weight of fish fed Algae6 being 70% higher than that of fish fed Algae0 after 12 weeks, reflecting up to 20% higher feed intake of algae-fed fish and the enhanced anterior intestinal absorption area (up to 45%). Whole-body and muscle lipid contents were increased with dietary algae supplementation levels by up to 1.79 and 1.74 folds in Algae 6 compared to Algae0, respectively. Even though the proportion of polyunsaturated fatty acids was reduced, the content of EPA and DHA in the muscle of algae-fed fish increased by nearly 43% compared to Algae0. The skin and filet color of juvenile European seabass were significantly affected by the dietary inclusion of the algae blend, but changes were small in the case of muscle, meeting the preference of consumers. Overall results highlight the beneficial effects of the commercial algae blend (Algaessence®) supplementation in plant-based diets for European seabass juveniles, but feeding trials up to commercial-size fish are needed to fully assess its potential

    A Nanostructured Lipid System to Improve the Oral Bioavailability of Ruthenium(II) Complexes for the Treatment of Infections Caused by Mycobacterium tuberculosis

    Get PDF
    Tuberculosis (TB) is an infectious, airborne disease caused by the bacterium Mycobacterium tuberculosis that mainly affects the lungs. Fortunately, tuberculosis is a curable disease, and in recent years, death rates for this disease have decreased. However, the existence of antibiotic-resistant strains and the occurrence of co-infections with human immunodeficiency virus (HIV), have led to increased mortality in recent years. Another area of concern is that one-third of the world′s population is currently infected with M. tuberculosis in its latent state, serving as a potential reservoir for active TB. In an effort to address the failure of current TB drugs, greater attention is being given to the importance of bioinorganic chemistry as an ally in new research into the development of anti-TB drugs. Ruthenium (Ru) is a chemical element that can mimic iron (Fe) in the body. In previous studies involving the following heteroleptic Ru complexes, [Ru(pic)(dppb)(bipy)]PF6 (SCAR1), [Ru(pic)(dppb)(Me-bipy)]PF6 (SCAR2), [Ru(pic)(dppb)(phen)]PF6 (SCAR4), cis-[Ru(pic)(dppe)2]PF6 (SCAR5), and [Ru(pic)(dppe)(phen)]PF6 (SCAR7), we observed excellent anti-TB activity, moderate cell-toxicity, and a lack of oral bioavailability in an in vivo model of these complexes. Therefore, the objective of this study was to evaluate the toxicity and oral bioavailability of these complexes by loading them into a nanostructured lipid system. The nanostructured lipid system was generated using different ratios of surfactant (soybean phosphatidylcholine, Eumulgin®, and sodium oleate), aqueous phase (phosphate buffer with a concentration of 1X and pH 7.4), and oil (cholesterol) to generate a system for the incorporation of Ru(II) compounds. The anti-TB activity of the compounds was determined using a microdilution assay with Resazurin (REMA) against strains of M. tuberculosis H37Rv and clinical isolates resistant. Cytotoxicity assay using J774.A1 cells (ATCC TIB-67) and intra-macrophage activity were performed. The oral bioavailability assay was used to analyze blood collected from female BALB/C mice. Plasma collected from the same mice was analyzed via inductively coupled plasma mass spectrometry (ICP-MS) to quantify the number of Ru ions. The complexes loaded into the nanostructured lipid system maintained in vitro activity and toxicity was found to be reduced compared with the compounds that were not loaded. The complexes showed intra-macrophagic activity and were orally bioavailable
    • …
    corecore