12 research outputs found

    Better late than never? Interannual and seasonal variability in breeding chronology of gentoo penguins at stranger point, Antarctica

    Get PDF
    Rapid climate change recorded in the western Antarctic Peninsula confronts species with less predictable conditions in the marine and terrestrial environments. We analysed the breeding chronology and nesting site selection of gentoo penguins (Pygoscelis papua) at King George Island (Isla 25 de Mayo), Antarctica, during four seasons in which differences in snow presence and persistence on the ground were observed. We recorded an overall delay as well as seasonal asynchrony at the beginning of reproduction for those years with higher snow deposition. A redistribution of breeding groups was also observed. Nevertheless, the population breeding success and chicks' weight at fledging remained relatively constant, despite the delay in breeding chronology, the increased duration of foraging trips during the guard stage and the decreased weight of stomach contents during the cre'che stage. We suggest that the plasticity of their trophic biology, along with the flexibility of their breeding phenology and relocation of breeding groups, may be complementary reasons why gentoo penguin populations in the region have remained stable in spite of the changing conditions currently registered.Facultad de Ciencias Naturales y MuseoInstituto Multidisciplinario de Biología Celula

    Estimating nest-level phenology and reproductive success of colonial seabirds using time-lapse cameras

    Get PDF
    1.Collecting spatially extensive data on phenology and reproductive success is important for seabird conservation and management, but can be logistically challenging in remote regions. Autonomous time‐lapse camera systems offer an opportunity to provide such coverage. 2.We describe a method to estimate nest‐level breeding phenology and reproductive success of colonial pygoscelid penguins using photographs from time‐lapse cameras. The method derives from stereotypical patterns of nest attendance, where predominantly two adults are present before and during laying, but switch to one adult during incubation. The switch approximates the date of clutch completion and is estimated by fitting a smoothing spline to daily nest attendance data, identifying candidate dates that switch from two adults to one and selecting the date when the first derivative of the spline is minimized. Clutch initiation and hatch dates are then estimated from the mean, species‐specific interval between laying (pygoscelid penguins typically lay two eggs) and the duration of the incubation period. We estimated these intervals for each species from historical field data. The phenology is adjusted when photographs indicate egg or chick presence prior to their estimated lay or hatch dates. The number of chicks alive in each study nest on its crèche date determines reproductive success estimates. The method was validated with concurrent direct observations for each species and then applied to a camera network in the Antarctic Peninsula region to demonstrate its utility. 3.Mean egg laying and incubation intervals from direct observations were similar within species across sites. In the validation study, the mean clutch initiation, hatch and crèche dates were generally equivalent between photographs and direct observations. Estimates of reproductive success were identical. Applying the method to a time‐lapse network suggested relatively high reproductive success for all species across the region and corroborated general understanding of latitudinal trends and species‐level plasticity in phenology. 4.The method accurately estimated phenology and reproductive success relative to direct observations and appears well‐suited to operationalize regional time‐lapse camera networks. The estimation method should be applicable for other seabirds with stereotypical nest attendance patterns from which breeding phenology could be estimated

    Abundance and breeding distribution of seabirds in the northern part of the Danco Coast, Antarctic Peninsula

    Get PDF
    Seabird abundances and breeding distribution have the potential to serve as ecological indicators. The western Antarctic Peninsula is one of the three sites in the world with the greatest increases in local temperature during the last 50 years. The aim of this study was to monitor the distribution and abundance of breeding populations of seabirds in the northern sector of the Danco Coast, north-west of the Antarctic Peninsula, during the breeding season 2010/11. The birds were the Wilson's storm petrel (Oceanites oceanicus), South Polar skua (Stercorarius maccormicki), kelp gull (Larus dominicanus), Antarctic tern (Sterna vittata), snowy sheathbill (Chionis alba), chinstrap penguin (Pygoscelis antarctica), southern giant petrel (Macronectes giganteus), gentoo penguin (Pygoscelis papua), Cape petrel (Daption capense) and Antarctic shag (Phalacrocorax bransfieldensis). Annual breeding population growth increased in pygoscelids, southern giant petrel and sheathbill, and for the remaining species, breeding population trends were stable. Given that seabird populations can provide valuable information on the conditions of their feeding and nesting environments, this study highlights the need to maintain basics monitoring studies.Keywords: Seabird abundances; breeding distribution; Danco Coast; Antarctic Peninsula(Published: 28 February 2013)Citation: Polar Research 2013, 32, 11133, http://dx.doi.org/10.3402/polar.v32i0.1113

    Over-representation of bird prey in pellets of South Polar Skuas

    Get PDF
    We report the first study to compare the contents of pellets and regurgitates of South Polar Skuas, Stercorarius maccormicki, at two breeding colonies on the Antarctic Peninsula. Samples were taken across years from identified breeding pairs at Potter Peninsula in sympatry with 30–40 breeding pairs of Brown Skuas, Stercorarius antarcticus lonnbergi, and from Cierva Point with 2 pairs of Brown Skuas. In contrast to the general consensus that penguins feature in the diet most prominently in the absence of Brown Skuas, we found a much more frequent occurrence of penguin remains in samples at Potter than Cierva, but only in pellets. At Cierva, penguin feathers were largely replaced in the pellets by a high frequency of non-food moss. The rare occurrence of penguins in regurgitates from both sites is consistent with scavenging rather than active predation. The high frequency of feathers in pellets at Potter is consistent with a gut-cleansing function similar to that performed by moss, which is abundant only at Cierva. We conclude that pellets over-represent penguins in the diet. For any species that consumes feathers, the evidence must consider the alternative possibility of a non-food function of ingesting feathers. <br/

    Better late than never? Interannual and seasonal variability in breeding chronology of gentoo penguins at Stranger Point, Antarctica

    Get PDF
    Rapid climate change recorded in the western Antarctic Peninsula confronts species with less predictable conditions in the marine and terrestrial environments. We analysed the breeding chronology and nesting site selection of gentoo penguins (Pygoscelis papua) at King George Island (Isla 25 de Mayo), Antarctica, during four seasons in which differences in snow presence and persistence on the ground were observed. We recorded an overall delay as well as seasonal asynchrony at the beginning of reproduction for those years with higher snow deposition. A redistribution of breeding groups was also observed. Nevertheless, the population breeding success and chicks’ weight at fledging remained relatively constant, despite the delay in breeding chronology, the increased duration of foraging trips during the guard stage and the decreased weight of stomach contents during the crèche stage. We suggest that the plasticity of their trophic biology, along with the flexibility of their breeding phenology and relocation of breeding groups, may be complementary reasons why gentoo penguin populations in the region have remained stable in spite of the changing conditions currently registered.Keywords: Antarctica; breeding delay; breeding phenology; snow; Pygoscelis papua; Euphausia superba (Published: 13 May 2013)Citation: Polar Research 2013, 32, 18448, http://dx.doi.org/10.3402/polar.v32i0.1844

    Estimating nest-level phenology and reproductive success of colonial seabirds using time-lapse cameras

    No full text
    Collecting spatially extensive data on phenology and reproductive success is important for seabird conservation and management, but can be logistically challenging in remote regions. Autonomous time-lapse camera systems offer an opportunity to provide such coverage. We describe a method to estimate nest-level breeding phenology and reproductive success of colonial pygoscelid penguins using photographs from time-lapse cameras. The method derives from stereotypical patterns of nest attendance, where predominantly two adults are present before and during laying, but switch to one adult during incubation. The switch approximates the date of clutch completion and is estimated by fitting a smoothing spline to daily nest attendance data, identifying candidate dates that switch from two adults to one and selecting the date when the first derivative of the spline is minimized. Clutch initiation and hatch dates are then estimated from the mean, species-specific interval between laying (pygoscelid penguins typically lay two eggs) and the duration of the incubation period. We estimated these intervals for each species from historical field data. The phenology is adjusted when photographs indicate egg or chick presence prior to their estimated lay or hatch dates. The number of chicks alive in each study nest on its crèche date determines reproductive success estimates. The method was validated with concurrent direct observations for each species and then applied to a camera network in the Antarctic Peninsula region to demonstrate its utility. Mean egg laying and incubation intervals from direct observations were similar within species across sites. In the validation study, the mean clutch initiation, hatch and crèche dates were generally equivalent between photographs and direct observations. Estimates of reproductive success were identical. Applying the method to a time-lapse network suggested relatively high reproductive success for all species across the region and corroborated general understanding of latitudinal trends and species-level plasticity in phenology. The method accurately estimated phenology and reproductive success relative to direct observations and appears well-suited to operationalize regional time-lapse camera networks. The estimation method should be applicable for other seabirds with stereotypical nest attendance patterns from which breeding phenology could be estimated.Hardware for the extended camera network was funded by the generous support of the CCAMLR (Commission for the Conservation of Antarctic Marine Living Resources) Ecosystem Monitoring Program Special Fund and by support to T.H. from the Darwin+ Initiative.Peer Reviewe
    corecore