955 research outputs found

    Design and investigation of properties of nanocrystalline diamond optical planar waveguides

    Get PDF
    Diamond thin films have remarkable properties comparable with natural diamond. Because of these properties it is a very promising material for many various applications (sensors, heat sink, optical mirrors, chemical and radiation wear, cold cathodes, tissue engineering, etc.) In this paper we report about design, deposition and measurement of properties of optical planar waveguides fabricated from nanocrystalline diamond thin films. The nanocrystalline diamond planar waveguide was deposited by microwave plasma enhanced chemical vapor deposition and the structure of the deposited film was studied by scanning electron microscopy and Raman spectroscopy. The design of the presented planar waveguides was realized on the bases of modified dispersion equation and was schemed for 632.8 nm, 964 nm, 1 310 nm and 1 550 nm wavelengths. Waveguiding properties were examined by prism coupling technique and it was found that the diamond based planar optical element guided one fundamental mode for all measured wavelengths. Values of the refractive indices of our NCD thin film measured at various wavelengths were almost the same as those of natural diamond

    Structural and Magnetic Properties of Yb0.5Ce0.5Ni5

    Get PDF
    The rare-earth magnetism in the intermetallic compound Yb0.5Ce0.5Ni5 was studied using X-ray diffraction, magnetization, heat capacity, and electrical resistivity measurements. The effect of spin fluctuations (SF) was observed in M(T) at ~40 K. The measurement of thermal and transport properties supported the results obtained from magnetic measurements. Collected experimental data showed that Yb/Ce substitution shifts the maximum temperature for spin fluctuations to a lower temperature compared to that for pure CeNi5. Moreover, at low temperatures, an anomaly in the heat capacity of possible magnetic origin arising from Yb3+ was detected. Ce atoms seemed to remain in a non-magnetic valence state at almost 4+.This research was funded by the Slovak Grant Agency VEGA 1/0404/21 (Materials with emergent behaviour and application possibilities under extreme physical conditions influence); VEGA 1/0705/20 (Novel rare earth based intermetallic compounds - crystal structure and physical properties of their ground state); VEGA 1/0053/19 (Influence of chemical composition on unique physical properties of modern functional materials) and APVV-16-0079 (Modern amorphous and polycrystalline functional materials for sensors and actuators

    Experimental study of emergent ground state behavior in Gd1-xCexNi5 (x = 0; 0.2; 0.5; 0.8 and 1) melt-spun ribbons

    Get PDF
    The ground state physical properties of Gd1-xCexNi5 (x = 0; 0.2; 0.5; 0.8 and 1) melt-spun ribbons were investigated by X-ray diffraction, magnetization and specific heat measurements. The produced ribbon samples are single phases with the hexagonal CaCu5-type crystal structure. The magnetic transition temperature decreases with increasing Ce content. At a temperature around 100 K for the CeNi5 melt-spun ribbon, the spin fluctuations effect is visible.This research work was supported partially by VEGA 1/0404/21; VEGA 1/0705/20; VEGA 1/0053/19, and APVV-16-0079

    Systemic L-Kynurenine sulfate administration disrupts object recognition memory, alters open field behavior and decreases c-Fos immunopositivity in C57Bl/6 mice

    Get PDF
    L-Kynurenine (L-KYN) is a central metabolite of tryptophan degradation through the kynurenine pathway (KP). The systemic administration of L-KYN sulfate (L-KYNs) leads to a rapid elevation of the neuroactive KP metabolite kynurenic acid (KYNA). An elevated level of KYNA may have multiple effects on the synaptic transmission, resulting in complex behavioral changes, such as hypoactivity or spatial working memory deficits. These results emerged from studies that focused on rats, after low-dose L-KYNs treatment. However, in several studies neuroprotection was achieved through the administration of high-dose L-KYNs. In the present study, our aim was to investigate whether the systemic administration of a high dose of L-KYNs (300 mg/bwkg; i.p.) would produce alterations in behavioral tasks (open field or object recognition) in C57BI/6j mice. To evaluate the changes in neuronal activity after L-KYNs treatment, in a separate group of animals we estimated c-Fos expression levels in the corresponding subcortical brain areas. The L-KYNs treatment did not affect the general ambulatory activity of C57BI/6j mice, whereas it altered their moving patterns, elevating the movement velocity and resting time. Additionally, it seemed to increase anxiety-like behavior, as peripheral zone preference of the open field arena emerged and the rearing activity was attenuated. The treatment also completely abolished the formation of object recognition memory and resulted in decreases in the number of c-Fos-immunopositive-cells in the dorsal part of the striatum and in the CA1 pyramidal cell layer of the hippocampus. We conclude that a single exposure to L-KYNs leads to behavioral disturbances, which might be related to the altered basal c-Fos protein expression in C57BI/6j mice

    Silicon-Vacancy Centers in Ultra-Thin Nanocrystalline Diamond Films

    Get PDF
    Color centers in diamond have shown excellent potential for applications in quantum information processing, photonics, and biology. Here we report the optoelectronic investigation of shallow silicon vacancy (SiV) color centers in ultra-thin (7–40 nm) nanocrystalline diamond (NCD) films with variable surface chemistry. We show that hydrogenated ultra-thin NCD films exhibit no or lowered SiV photoluminescence (PL) and relatively high negative surface photovoltage (SPV) which is ascribed to non-radiative electron transitions from SiV to surface-related traps. Higher SiV PL and low positive SPV of oxidized ultra-thin NCD films indicate an efficient excitation—emission PL process without significant electron escape, yet with some hole trapping in diamond surface states. Decreasing SPV magnitude and increasing SiV PL intensity with thickness, in both cases, is attributed to resonant energy transfer between shallow and bulk SiV. We also demonstrate that thermal treatments (annealing in air or in hydrogen gas), commonly applied to modify the surface chemistry of nanodiamonds, are also applicable to ultra-thin NCD films in terms of tuning their SiV PL and surface chemistry

    Impact of safety-related dose reductions or discontinuations on sustained virologic response in HCV-infected patients: Results from the GUARD-C Cohort

    Get PDF
    BACKGROUND: Despite the introduction of direct-acting antiviral agents for chronic hepatitis C virus (HCV) infection, peginterferon alfa/ribavirin remains relevant in many resource-constrained settings. The non-randomized GUARD-C cohort investigated baseline predictors of safety-related dose reductions or discontinuations (sr-RD) and their impact on sustained virologic response (SVR) in patients receiving peginterferon alfa/ribavirin in routine practice. METHODS: A total of 3181 HCV-mono-infected treatment-naive patients were assigned to 24 or 48 weeks of peginterferon alfa/ribavirin by their physician. Patients were categorized by time-to-first sr-RD (Week 4/12). Detailed analyses of the impact of sr-RD on SVR24 (HCV RNA <50 IU/mL) were conducted in 951 Caucasian, noncirrhotic genotype (G)1 patients assigned to peginterferon alfa-2a/ribavirin for 48 weeks. The probability of SVR24 was identified by a baseline scoring system (range: 0-9 points) on which scores of 5 to 9 and <5 represent high and low probability of SVR24, respectively. RESULTS: SVR24 rates were 46.1% (754/1634), 77.1% (279/362), 68.0% (514/756), and 51.3% (203/396), respectively, in G1, 2, 3, and 4 patients. Overall, 16.9% and 21.8% patients experienced 651 sr-RD for peginterferon alfa and ribavirin, respectively. Among Caucasian noncirrhotic G1 patients: female sex, lower body mass index, pre-existing cardiovascular/pulmonary disease, and low hematological indices were prognostic factors of sr-RD; SVR24 was lower in patients with 651 vs. no sr-RD by Week 4 (37.9% vs. 54.4%; P = 0.0046) and Week 12 (41.7% vs. 55.3%; P = 0.0016); sr-RD by Week 4/12 significantly reduced SVR24 in patients with scores <5 but not 655. CONCLUSIONS: In conclusion, sr-RD to peginterferon alfa-2a/ribavirin significantly impacts on SVR24 rates in treatment-naive G1 noncirrhotic Caucasian patients. Baseline characteristics can help select patients with a high probability of SVR24 and a low probability of sr-RD with peginterferon alfa-2a/ribavirin
    corecore