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L-Kynurenine (L-KYN) is a central metabolite of tryptophan degradation through the

kynurenine pathway (KP). The systemic administration of L-KYN sulfate (L-KYNs) leads

to a rapid elevation of the neuroactive KP metabolite kynurenic acid (KYNA). An elevated

level of KYNAmay havemultiple effects on the synaptic transmission, resulting in complex

behavioral changes, such as hypoactivity or spatial working memory deficits. These

results emerged from studies that focused on rats, after low-dose L-KYNs treatment.

However, in several studies neuroprotection was achieved through the administration

of high-dose L-KYNs. In the present study, our aim was to investigate whether the

systemic administration of a high dose of L-KYNs (300mg/bwkg; i.p.) would produce

alterations in behavioral tasks (open field or object recognition) in C57Bl/6j mice. To

evaluate the changes in neuronal activity after L-KYNs treatment, in a separate group

of animals we estimated c-Fos expression levels in the corresponding subcortical brain

areas. The L-KYNs treatment did not affect the general ambulatory activity of C57Bl/6j

mice, whereas it altered their moving patterns, elevating the movement velocity and

resting time. Additionally, it seemed to increase anxiety-like behavior, as peripheral zone

preference of the open field arena emerged and the rearing activity was attenuated. The

treatment also completely abolished the formation of object recognition memory and

resulted in decreases in the number of c-Fos-immunopositive-cells in the dorsal part of

the striatum and in the CA1 pyramidal cell layer of the hippocampus. We conclude that

a single exposure to L-KYNs leads to behavioral disturbances, which might be related to

the altered basal c-Fos protein expression in C57Bl/6j mice.
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Introduction

In the mammalian brain, more than 95% of the tryptophan
is metabolized through the kynurenine pathway (KP) (Leklem,
1971). L-Kynurenine (L-KYN) is the central intermediate in
this complex metabolic cascade, which ends with nicotinamide
adenine dinucleotide, kynurenic acid (KYNA) and xanthurenic
acid (Beadle et al., 1947; Heidelberg et al., 1949; Fujigaki
et al., 1998). Certain kynurenines (e.g., KYNA) have been
demonstrated to have neuroactive properties (Lapin, 1978;
Perkins and Stone, 1982; Stone and Darlington, 2007; Vécsei
et al., 2013). The de novo formation of KYNA from its
precursor L-KYN is associated with the action of the kynurenine
aminotransferases (KATs), and especially KAT II, which is located
predominantly in the glial cells, but can also be found in the
neurons (Guidetti et al., 1997; Rzeski et al., 2005; Lim et al.,
2007). It is known mainly from in vitro studies that KYNA acts
as a non-competitive antagonist on the α7 nicotinic acetylcholine
(α7nACh) receptor at submicromolar level (Hilmas et al., 2001;
Albuquerque and Schwarcz, 2013). It exerts dual action on the α-
amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)
receptor via two distinct mechanisms (Prescott et al., 2006;
Rózsa et al., 2008), and at low micromolar concentrations (IC50

15–240µM, glycine concentration-dependent Hilmas et al.,
2001) it can competitively antagonize the N-methyl-D-aspartate
(NMDA) receptor, at the strychnine-insensitive glycine-binding
site (Gál and Sherman, 1980; Birch et al., 1988). It has recently
been demonstrated that KYNA is an endogenous ligand of the
G-protein coupled receptor 35 (GPR35; EC50 10µM), which is
expressed predominantly in the peripheral organs, but can also be
found in the central nervous system (Wang et al., 2006; Cosi et al.,
2011). KYNA can potently attenuate the amplitude of evoked
excitatory post-synaptic currents at the CA1 pyramidal neurons
in the hippocampus, via activation of the astrocytic GPR35
receptors (Berlinguer-Palmini et al., 2013). Moreover, GPR35
receptors can also be expressed by CA1 pyramidal neurons
(Alkondon et al., 2015).

A shift in the brain concentration of KYNA has been described
in several neurodegenerative disorders (Vamos et al., 2009;
Schwarcz et al., 2012; Campbell et al., 2014). It decreases during
epilepsy (Kamiński et al., 2003), Parkinson’s disease (Oqawa et al.,
1992; Szabó et al., 2011), and Huntington’s disease (Beal et al.,
1992, 1990), whereas it increases during schizophrenia (Schwarcz
et al., 2001; Nilsson et al., 2005; Linderholm et al., 2012) and
Alzheimer’s disease (Baran et al., 1999; Gong et al., 2011).

The therapeutic application of kynurenergic manipulation
was therefore proposed recently (Németh et al., 2004; Gigler et al.,
2007; Stone and Darlington, 2007; Wonodi and Schwarcz, 2010;
Gellért et al., 2011; Schwarcz et al., 2012; Tan et al., 2012; Stone
et al., 2013).

Under physiological conditions, a systemic administration
of L-KYN sulfate (L-KYNs) may result in the increment of
several downstream metabolites of the KP [for instance the
increased concentrations of quinolinic acid (QUIN) and 3-
hydroxykynurenine (3-HK), neurotoxic components of the
KP]. However, the most prominent change occurs in the
concentration of the extracellular brain KYNA level, which

dose-dependently increases in the striatum (Swartz et al., 1990),
the prefrontal cortex (Zmarowski et al., 2009; Alexander et al.,
2012) and the hippocampus (Scharfman et al., 2000; Wu
et al., 2000), peaking at around 2 h following the injection.
Concomitant region-specific decreases can be observed in the
concentration of extracellular glutamate (Carpenedo et al., 2001;
Alexander et al., 2012), dopamine (Rassoulpour et al., 2005; Wu
et al., 2007; Olsson et al., 2012), acetylcholine (Zmarowski et al.,
2009; Koshy Cherian et al., 2014), and gamma-aminobutyric acid
(GABA, Beggiato et al., 2014).

In several studies done by our group and our contributors,
L-KYNs administration proved to be neuroprotective in
experimental models of neurodegeneration (Gigler et al., 2007;
Knyihár-Csillik et al., 2007a; Robotka et al., 2008; Sas et al.,
2008). In these studies, neuroprotection was achieved partly
by the administration of 300mg/bwkg L-KYNs. We have
chosen the same dosage to obtain information about the
effect of L-KYNs beyond neuroprotection in intact animals
and to investigate how effects of this treatment converge on
the level of behavior and c-Fos protein expression in mice.
There is an unequivocal relationship between hippocampal c-
Fos expression and memory formation (Vanelzakker et al.,
2011). The relationship between basal ganglia activity and c-Fos
expression is also described (Freeze et al., 2013). For this reason
we targeted the hippocampus, which definitely corresponds to
memory formation (Battaglia et al., 2011), and the striatum,
which regulates movement velocity (Yin, 2014). We proposed
that if altered behavior were observed, we would therefore find
altered c-Fos expression as well.

There is available data on how acute kynurenergic
manipulation alters behavior in adult rats. The long-lasting
effect of pre-or perinatal kynurenergic manipulation in the rat is
also partly described. Implementing similar experiments in mice
is of particular importance, because such data is almost absent
from the literature.

The ambulatory activity and anxiety-like behavior were
assessed in an open field (OF) paradigm. Episodic-like memory
performance was tested in an object recognition (OR) paradigm.
The numbers of c-Fos+ cells were then compared in the
corresponding brain areas by means of immunohistochemical
technique.

Materials and Methods

Animals
For the tests, 8–10 week-old male C57Bl/6j mice (n = 59)
weighing 20–26 g were used. The animals were obtained
from The National Institute of Oncology (Budapest, Hungary)
and were housed under controlled laboratory conditions, in
groups of 5, under an inverse 12-h dark/light cycle, with ad
libitum access to food and tap water. To avoid the effects of
shipping stress a 2-week habituation period was used before
initiation of the behavioral testing (Walf and Frye, 2007). All
housing and experiments were conducted in accordance with the
European Communities Council Directives (86/609/ECC) and
the Hungarian Act for the Protection of Animals in Research
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(XXVIII.tv. 32.§). Efforts were made to minimize the number
of animals used and to reduce pain and discomfort. All of
the experiments were approved by the following ethical license:
XX/01593/I/2010.

Drug Administration
The mice were divided into two groups: the L-KYNs-treated
animals (n = 30) received 300 mg/bwkg L-KYNs [dissolved
in 5% NaOH and 0.2M phosphate buffer (PB), pH 7.4] i.p.,
administered 2 h prior to the behavioral tasks or 3 h before the
histological experiments, while the control animals (n = 29) were
treated with the vehicle (0.2M PB). All chemicals were purchased
from Sigma, St. Louis, MO, USA.

Locomotion Activity Measurement in an Open
Field
The OF consisted of a square arena (50 × 50 cm) enclosed
by continuous, 50-cm-high, light-gray opaque walls made of
plexiglass. The apparatus was placed in a room illuminated by
adjustable lamps giving a dim light within the arena (around 280
lux).

Mice (n = 9 per control group, 10 per L-KYNs-treated
group) were placed into the middle of one side of the arena
facing the wall. The animals were allowed to move freely for
8min, while their horizontal ambulatory activity was tracked
with the aid of a video-tracking system (SMART R© by Panlab
Harvard Apparatus). This allowed us to measure all the required
parameters: total distance moved (cm), time spent moving (s),
average speed (cm/s), number of entries into different zones and
proportion of total time spent in the OF arena in different speed
threshold ranges (percentage). Speed thresholds were correlated
to the maximal moving speed (45 cm/s) of the mice, previously
determined with an independent cohort of animals (previous
study, not presented here). The maximal moving speed of the
mice was then halved, to give a slow moving speed group
(<22.5 cm/s) and a high moving speed group (>22.5 cm/s).

Following the experimental session, the mice were carefully
removed from the OF, and returned to their home cage. The
test equipment was cleaned with 50% ethanol solution and dried
between subjects in order to avoid olfactory cuing.

Behavioral Observations in an Open Field
The anxiety-like behavior in the OF arena was assessed. The
percentage of the time spent within the central part of the
arena was determined, which was illuminated slightly better
(300 lux) than the peripheral parts (250 lux). The central area
delineated virtually with SMART R© software, was taken as an
imaginary inner square (30 × 30 cm) of the OF. The 8-min
free exploration period was recorded simultaneously by a video
recorder. Stereotyped behavior relevant at the level of anxiety
(number of rearings, and times spent grooming and freezing)
were scored manually (Carola et al., 2002). A single primary
observer blind to the experimental condition conducted the
behavioral observations.

Object Recognition
The OR memory task was performed in the OF arena, located
in a testing room dimly lit by a constant illumination of

about 50 lux in the test arena. The OF apparatus and the
objects were cleaned with 50% ethanol solution and dried
between subjects to avoid olfactory cuing. Unique objects were
constructed from Lego R© blocks that differed in shape and color
(Supplementary Figure 1). These were around 10 cm high, and
attached to the floor with Blu-Tack to avoid displacement by the
animals. Duplicate copies of each object were used and each pair
of objects was previously tested in the corresponding species for
the absence of spontaneous preference for one object of the pair
(unpublished observations). Within each experimental group,
the role (familiar versus novel object) and the relative position of
the two objects were counterbalanced and randomly permuted.
Animals were placed in the experimental room at least 30min
prior to testing.

All animals (n = 10 per group) took part in a habituation
session, when they could freely explore the OF for 5min. No
objects were placed in the box during this session. Twenty-four
h after habituation, training was conducted by placing individual
mice into the arena for 4min, in which two identical objects (A
and A1) were positioned in opposite corners, 7 cm from the walls.
The amount of time spent exploring both objects A and A1 was
recorded. The test session was performed 2 h after training, when
themice explored the OF for 4min in the presence of one familiar
(A) and one novel (B) object, and the time spent exploring the
objects was recorded. Exploration of the objects was timed by a
stopwatch when themice sniffed, whisked or looked at the objects
from no more than 1 cm away.

In order to analyze the OR performance of the mice,
a modified version of a previously described formula
(discrimination ratio Winters et al., 2008) was calculated as
follows: novel × 100/(novel + familiar), where “novel” is the
time spent exploring B and “familiar” is the time spent exploring
A. This ratio named the discrimination index (DI), and shows
the object exploration preference, expressed in percentage. Fifty
percent denotes equal object preference, while higher values
denote a preference for B, and lower values denote a preference
for A.

Tissue Preparation
Animals were anesthetized (n = 10 per goup) with an
overdose of urethane and perfused transcardially with ice-cold
0.1M phosphate buffer (PB pH 7.4) and 4% paraformaldehyde
(dissolved in 0.1M PB, pH 7.4). The brains were removed and
post-fixed overnight in 4% paraformaldehyde. On the next day,
20-µm coronal sections were obtained with a vibratome (Leica
VT1000S) +0.54mm and –2mm from the bregma (MacKenzie-
Graham et al., 2004). Five slices were collected in 100-µm steps
from both regions.

c-Fos Fluorescent Immunohistochemistry
In order to study possible alterations in neural activity caused
by the elevated brain KYNA level, we used an indirect
immunohistochemical method. 20-µm-thick free-floating
sections were washed in PB, and then incubated in 1% normal
donkey serum (NDS). For the detection of c-Fos-positive
neurons in the striatum and in the hippocampus, sections were
exposed to the primary antibody (rabbit anti c-Fos, 1:2000;
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Santa Cruz) overnight at 4◦C, and for 2 h to the secondary
antibody (Cy3 conjugated donkey anti-rabbit, 1:500; Jackson
ImmunoResearch) at room temperature. Primary and secondary
antibodies were diluted in 0.1M PB containing 0.4% Triton-
X100 and 1% NDS. The sections were coverslipped with antifade
mounting medium (ProLong R© Gold, Life Technologies).
Fluorescent photomicrographs were obtained with an Olympus
BX51 microscope fitted with a DP70 digital imaging system.

Changes in c-Fos protein expression occur within 30 and
90min after certain forms of neuromodulation. A 3-h latency
period was therefore interposed after vehicle or L-KYNs
administrations, for the histological study.

Quantification, Data Collection, and Statistical
Analysis
In the CA1 region of the hippocampus, photomicrographs were
captured in a frame of 500 × 140µm at 200× magnification
(Figures 5A,B). The dorsal part of the striatum included for
analysis was captured at 100× magnification and delineated
manually (Figures 6A,B). c-Fos+ cells were automatically
counted with custom-written software in MATLAB 7.1
(Mathworks, Natick, Massachusetts, USA). After automated
threshold adjustment and noise reduction, fluorescent objects
in the range 25–400µm2 were accepted as cells and counted in
binary images.

Numbers of c-Fos+ cells were compared with the Generalized
Linear Mixed Model (GLMM). The data were regarded as
overdispersed count data and negative binomial distribution with
a log link was applied in the statistical analysis. The effects
of the different mice were used as random effects and the
different treatments were used as fixed effects in the mixed
linearized model. Statistical analysis of the OF behavior was
performed with the multivariate ANOVA (mANOVA). Robust
Pillai’s Trace multivariate test and bootstrapping analysis were
used to handle violation of model assumptions if sample size
was unbalanced. Statistical analysis of count data (number of
rearings, see Figure 3B) was performed with Mann-Whitney U-
test. Various statistical analyses were performed for evaluation
of the OR performance. The paired t-test was used to compare
the sample phase with the choice phase within each group, and
the independent t-test was used to compare the same phases
between groups (for the DI, see Section Object Recognition). The
normality of the data was tested with the Shapiro-Wilk normality
test.

All figures and computations were carried out with IBM SPSS
Statistics software (version 20). Behavioral data were collected
automatically with the SMART video-tracking system (PanLAB).

Results

Locomotion Activity
A One-Way MANOVA revealed a significant multivariate main
effect for treatment, Pillai’s Trace = 0.977, F(6, 11)=78.766, p <

0.001, partial eta squared= 0.977. No difference in total distance
moved was found between the control and L-KYNs-treated
groups (Figure 1A; p = 0.91). However, the L-KYNs-treated
mice moved for a significantly shorter time and their resting time

FIGURE 1 | Effects of L-KYNs treatment on the ambulatory activity of

C57Bl/6j mice. (A) Total distance moved (cm). No difference was found

between the control and treated groups. (B) Percentage of resting time:

treatment elevated the percentage of resting time. Data are shown as

means ± SEM (mANOVA; *p ≤ 0.05; n = 19 animals).

was significantly elevated (Figure 1B; p = 0.032). Furthermore,
the administration of L-KYNs significantly elevated the
movement velocity of the C57Bl/6j mice as compared with
the vehicle-treated group. Activation was observed in various
parameters: their average speed (Figure 2A; p < 0.001), their
maximal speed (Figure 2B; p < 0.001) and the proportion of
high-speed movement (above 22.5 cm/s; Figure 2C; p = 0.020).
Accordingly, the proportion of low-speed movement (under
22.5 cm/s) was significantly attenuated (Figure 2D; p < 0.001).

Moving Patterns
Although not confirmed by statistical data, the treatment
altered the moving pattern of the animals. Their movement
became wobbling and biphasic. In the “active” state, the mice
accelerated and changed their direction rapidly and frequently.
In the “passive” state, they stopped moving and expressed
stereotyped freezing. These two states seemed to alternate
randomly throughout the observations (Supplementary Video 1).

Observations in the Open Field Arena
A One-Way MANOVA revealed a significant multivariate main
effect for treatment, Pillai’s Trace = 0.609, F(2, 16) = 12.483,
p = 0.001, partial eta squared = 0.609. The L-KYNs-treated mice
spent significantly less time in the highly illuminated central zone
of the OF arena (Figure 3A; p = 0.006). The number of entries
into the central zone does not differ significantly between the two
groups (Mann-Whitney U-test, p = 0.176), however, the time
that the animal spend in the central zone, does [independent
T-test; t(17) = 3.160; p = 0.006]. These data suggest that the
decreased central zone preference is not the result of altered
locomotion.

Additionally, the total number of rearings was significantly
lowered (Figure 3B; Z= −3676, p < 0.001), while the time spent
in stereotyped grooming and freezing was significantly elevated
(Figure 3C; p < 0.001).

Object Recognition Memory
In the vehicle-treated group during the choice phase mice
spent more time exploring the novel object. In contrast,
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FIGURE 2 | Effects of L-KYNs treatment on the movement velocity of

C57Bl/6j mice. (A) Average speed (cm/s). Treatment significantly accelerated

the average speed of the animals. (B) Maximal speed (cm/s). Treatment

significantly elevated the maximal speed of the animals. (C) Proportion of

high-speed movement (>22.5 cm/s). Treatment significantly elevated the

percentage of fast moving. (D) Proportion of low-speed movement

(<22.5 cm/s). Treatment significantly diminished the percentage of slow

moving. Data are shown as means ± SEM (mANOVA; *p ≤ 0.05; ***p ≤ 0.001;

n = 19 animals).

the L-KYNs-treated group spent equal times exploring both
objects (Supplementary Figure 2). The treatment altered the OR
memory performance expressed as DIs. While the DI of the
control group was significantly elevated in the choice phase as
compared with the sample phase [t(9) = −2.668, p = 0.026],
there was no statistical differences between the phases in the
L-KYNs-treated group. When the choice phases of the two
groups were compared, the DI of the treated group proved to be
significantly diminished [t(18) = −2.325, p = 0.032] (Figure 4).

c-Fos Fluorescent Immunohistochemistry
In order to study whether L-KYNs can affect the basal c-Fos
level in brain structures relevant to the behavioral experiments,
we performed c-Fos immunostaining in the CA1 area of the
hippocampus and in the dorsal part of the striatum in C57Bl/6
mice. The analyzed subsections of the examined brain areas
are illustrated in Figures 5A, 6A. Intensive cytoplasmatic c-Fos
immunopositivity was observed in the CA1 pyramidal cell layer,
most of the cells expressing the c-Fos protein. There were a
lower number of c-Fos+ cells in the pyramidal cell layer of
the CA1 subregion in the L-KYNs-treated group in comparison
with the vehicle-treated group (Figure 5B). A similar tendency
was observed in the dorsal part of the striatum in response
to L-KYNs administration. Strong c-Fos immunopositivity was
mostly observed in the medial part of the dorsal striatum,
whereas cells expressing the c-Fos protein were sporadic in the

FIGURE 3 | Effects of L-KYNs treatment on the anxiety-related

behaviors of C57Bl/6j mice. (A) Percentage of time spent in the central area

of the OF arena. Treatment significantly diminished the preference for the

central zone. (B) Number of rearings. Treatment significantly diminished the

rearing activity of the animals. (C) Time (s) spent expressing stereotypy, e.g.,

grooming and freezing. Treatment significantly elevated the time of expressing

stereotypy behavior. Data are shown as means ± SEM (mANOVA or

Mann-Whitney U-test **p ≤ 0.01; ***p ≤ 0.001; n = 19 animals).

L-KYNs-treated group (Figure 6B). The differences observed
between the vehicle and L-KYNs-treated groups were significant
in the hippocampal CA1 area [F(1, 83) = 6.501; p = 0.013;
Figure 5C] and in the dorsal striatum [F(1, 83) = 12.701; p =

0.001; Figure 6C].
These data suggest that L-KYNs treatment results in a

significant reduction in the number of c-Fos+ cells in both brain
areas relating to our behavioral tests.

Discussion

This is the first study, which demonstrate that the peripheral
administration of L-KYNs does not affect the general ambulatory
activity of C57Bl/6j mice, whereas it alters their moving patterns,
elevating the movement velocity and resting time. Additionally,
it seems to increase anxiety-like behavior, while it completely
abolishes the formation of OR memory and also alters the
number of c-Fos immunopositive-cells in the dorsal part of the
striatum and in the CA1 pyramidal cell layer of the hippocampus.

Because of its poor blood-brain-barrier penetration,
systemically administered KYNA cannot directly be used
for experiments, examining its role in the CNS. An exogenous
administration of L-KYNs can be an efficient way to increase the
brain concentration of KYNA. However, systemic administration
of L-KYNs may result in the increment of several downstream
metabolites (QUIN, 3-HK) of the KP. Furthermore, kynurenine
itself is a ligand for aryl hydrocarbon receptors (AHR) through

Frontiers in Behavioral Neuroscience | www.frontiersin.org 5 June 2015 | Volume 9 | Article 157

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Varga et al. Effects of kynurenine treatment in mice

FIGURE 4 | Effects of L-KYNs treatment on object recognition memory

performance, expressed as discrimination index (DI). The DI of the

control group during the choice phase was significantly elevated as compared

with the sample phase. However, there was no such difference in the treated

group. The DI of the choice phase for treated group was significantly lower

than that for the controls. Data are shown as means ± SEM (paired t-test;

*p ≤ 0.05; independent t-test; *p ≤ 0.05; n = 20 animals). [DI: novel ×

100/(novel + familiar)].

which regulation of immune and inflammatory responses is
also possible. We cannot exclude these processes. However,
several studies observed increased brain KYNA levels following
systemic administration of L-KYNs (Swartz et al., 1990; Chauvel
et al., 2012), but increase of other kynurenine metabolites
either doesn’t occur, or occurs within a certain delay (Speciale
et al., 1989; Heyes and Nowak, 1990; Shepard et al., 2003). The
main source of QUIN and 3-HK is the activated microglia and
the macrophage, infiltrated during inflammatory processes.
Furthermore, increased L-KYN influx from the blood exceeds
the catabolic capacity of kynurenine 3-hydroxylase in microglia,
promoting KYNA production in the astrocytes (Guillemin et al.,
2001; Wonodi and Schwarcz, 2010). Guidetti and co-workers
proved that in the rat brain KYN is mostly converted into
KYNA; only a minor portion is converted into 3-HK and QUIN
(Guidetti et al., 1995). The activity of indoleamine-dioxigenase
(IDO), the rate-limiting enzyme of the KYN pathway, can
be increased by inflammatory signals (Connor et al., 2008).
Kynurenine catabolism falls downstream to IDO-mediated
processes; inflammatory signals do not influence the effect of
exogenous L-KYNs in our experiment.

Based on the literature in our experiments, the short time
window (2 h) after L-KYNs administration promotes KYNA
production, while the extracellular concentration of the other
KP metabolites might be negligible. We may also state that
inflammatory signals do not influence our results.

An increased concentration of KYNA in the brain can exert
multiple actions on synaptic transmission, resulting in altered
behavior. In an OF paradigm, a single systemic injection of L-
KYNs (100mg/bwkg) slightly, but not significantly attenuated
the ambulatory activity and significantly decreased the rearing
activity of rats (Vécsei and Beal, 1990; Chess et al., 2007).

FIGURE 5 | Effects of L-KYNs treatment on the number of c-Fos+ cells

in the hippocampal CA1 area of C57Bl/6j mice. (A) Schematic illustration

of the hippocampus. The red box (500× 140µm) indicates the captured and

analyzed subregion of CA1. (B) Representative photomicrographs of c-Fos

immunostaining in the CA1. There were a lower number of c-Fos+ cells in the

L-KYNs-treated group (bottom panel) in comparison with the vehicle-treated

group (top panel). Scale bars represent 50µm. (C) Number of c-Fos+ cells in

the CA1 area. The number of c-Fos+ cells was significantly reduced following

L-KYNs administration. Data are shown as median, interquartile ranges ±

minimum/maximum values (GLMM, *p ≤ 0.05; n = 20 animals).

In our experiments, L-KYNs treatment reduced the rearing
activity and altered the moving pattern of the mice. Similar
behavioral observations were reported earlier following systemic
administration of the non-competitive NMDA receptor
antagonist MK-801 to C57Bl/6 mice; the injection of a relatively
low dose of MK-801 suppressed the rearing activity and induced
abnormal movement velocity (Wu et al., 2005).

Besides the changes in the moving pattern, the L-KYNs
treatment significantly attenuated the level of c-Fos expression
in the dorsal part of the striatum in C57Bl/6j mice. The
sensorimotor cortico-basal ganglia network is responsible for
controlling voluntary movements and plays a critical role in
determining the movement speed. The fluctuation of dopamine
in the dorsal striatum can precisely tune a reference signal,
which regulates the movement velocity via control of the input
strength of the glutamatergic cortical afferents (Beninger and
Olmstead, 2000; Bonsi et al., 2011; Yin, 2014). Experimentally
manipulated dopaminergic signaling in rodents leads to an
impaired movement velocity control, clearly revealing that the
dorsal part of the striatum is critical for the timing of actions
(Cousins et al., 1993; Yin, 2014). It has been reported that
a nanomolar concentration of KYNA can potently reduce the
extracellular level of dopamine in the striatum of unanesthetized
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FIGURE 6 | Effects of L-KYNs treatment on the number of c-Fos+ cells

in the dorsal striatum of C57Bl/6j mice. (A) Schematic illustration of the

striatum. The red line indicates the captured and analyzed subregion of the

dorsal striatum. (B) Representative photomicrographs of c-Fos

immunostaining in the dorsal striatum. There were a lower number of c-Fos+

cells in the L-KYNs-treated group (bottom panel) in comparison with the

vehicle-treated group (top panel). Scale bars represent 200µm. (C) Number of

c-Fos+ cells in the dorsal part of the striatum. The number of c-Fos+ cells

was significantly reduced following L-KYNs administration. Data are shown as

median, interquartile ranges ± minimum/maximum values (GLMM;

***p ≤ 0.001; n = 20 animals).

rats in vivo, via attenuation of the release of glutamate from
the glutamatergic cortical afferents by inhibition of the α7nACh
receptor (Rassoulpour et al., 2005; Bonsi et al., 2011). For this
reason, the attenuated c-Fos expression level in the dorsal part of
the striatum could correspond with the abnormalities observed
in the moving pattern and movement velocity of the L-KYNs-
treated mice.

The OR learning paradigm is a simple and rapid model for
detection of the amnestic properties of a neuroactive chemical
in rodents (Bertaina-Anglade et al., 2006). In accord with the
classical theories of the hippocampal function in rodents, it has
been proved that this region is also essential for non-spatial OR
memory during the encoding and consolidation phases of the
memory process (Hammond et al., 2004; Bertaina-Anglade et al.,
2006; Dere et al., 2007; Winters et al., 2008; Assini et al., 2009;
Cohen et al., 2013). For this reason, in our experiments the mice
were injected 2 h prior to the sample phase of OR task. The peak
de novo formation of KYNA in the brain of themice was therefore
triggered for the encoding (sample phase) and consolidation
(retention interval) phases and not for the retrieval (choice phase)
(Swartz et al., 1990; Winters et al., 2008).

In our experiments, the treated mice failed to recognize the
novel object in the choice phase. We can assume that the L-
KYNs treatment interfered with the formation of recollection
of the familiar object (encoding and memory consolidation).
Others observed similar results after kynurenergic manipulation.
In a radial arm maze paradigm systemic L-KYNs treatment
(100 mg/bwkg) impaired the spatial working memory function

in rats (Chess et al., 2007). The OR performance can be
influenced by a sensory-motoric, attentional or motivational
disturbance (Dere et al., 2007). For this reason, the total
distance moved as a general ambulatory activity marker was
compared. We found no statistical difference in either the
sample or the choice phase between the two groups (Data
not shown). Concerning the object exploration time, we did
not measure decreased exploratory activity in the L-KYNs
treated group, in the sample phase. Based on these finding
we may conclude that the abolished OR performance is not
attributable to altered exploration activity of the animals, instead
acquisition and consolidation phases of the memory formation
were affected.

Additionally, the treatment significantly attenuated the c-Fos
expression level in the pyramidal cells of the CA1 area of the
hippocampus. Direct elevation of the KYNA level is known to
inhibit the glutamatergic transmission to the CA1 pyramidal
neurons predominantly via an α7nACh receptor-dependent
mechanism (Banerjee et al., 2012). Others have found that an
increased KYNA level can efficiently reduce the excitability of the
CA1 stratum radiatum interneurons and lower the GABAergic
transmission to the pyramidal cells, via antagonistic actions
on α7nACh receptors and NMDA receptors (Alkondon et al.,
2011). On top of this, recent findings demonstrated that the
administration of specific peptides that disrupt the formation
of α7nAch receptor/NMDA receptor coupling complexes in the
hippocampus impairs OR memory in mice (Li et al., 2013). For
this reason, the attenuated c-Fos expression level in the CA1 area
of the hippocampus may parallel the impaired performance of
OR in the L-KYNs-treated mice.

L-KYNs treatment increased anxiety-like behavior,
significantly decreasing the time spent in the center of the
OF, and significantly increasing stereotypy. Similar observations
have been reported in rats, where systemic L-KYNs treatment
induced an increased level of anxiety in an elevated plus-maze
test (Vécsei and Beal, 1990). Additionally, the direct i.c.v.
administration of KYNA resulted in ataxia and stereotypy in
a dose-dependent manner (Vécsei and Beal, 1991). Chronic
administration of L-KYNs causes long-term disturbances
in rodent behavior. Following pre- and post-natal exposure
to L-KYNs, adult rats exhibited an impaired performance
in a behavioral test linked to the hippocampal function
(Pocivavsek et al., 2012), while adult mice demonstrated an
enhanced sensitivity to D-amphetamine-induced increase in
locomotion activity following neonatal L-KYNs injections
(Liu et al., 2014). Moreover, chronic elevation of brain
KYNA level during development in rats, caused cognitive
and behavioral disturbances in the adult animals (DeAngeli et al.,
2015).

Under our experimental conditions, a single exposure to L-
KYNs led to behavioral disturbances and a reduction in the
level of expression of a transcriptional factor c-Fos in different
subcortical areas. The c-Fos protein is an immediate early gene
product applied as an almost universal neuronal activity marker.
In the nucleus, c-Fos can mediate long-term responses due to
enhanced neurotransmission, including the expression of tissue-
specific genes or information storage (Kaczmarek, 2002). The
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transcription of c-fos is controlled through an increase in the
intracellular concentration of Ca2+. During plastic processes
in the murine brain, the activation of Ca2+-permeable NMDA
receptors and AMPA receptors is the most determinant, and
the influence of Ca2+-permeable α7nACh receptors can also
be considerable (Sagar et al., 1988; Séguéla et al., 1993). The
activation of NMDA or non-NMDA glutamate receptors was
found to induce a rapid and dramatic Ca2+-dependent increase
in c-fos mRNA in the dentate gyrus neurons, in vitro (Lerea
et al., 1992). Moreover, the activation of nACh receptors
induces the rapid transcription of c-fos mRNA in non-dividing,
neuronally differentiated PC12 cells in a Ca2+-dependent
manner (Greenberg et al., 1986). Beyond its transcriptional
role, c-Fos protein is a generally accepted neuronal activity
marker. c-Fos expression level sensitively correlates with
neuronal activity after physiological stimuli or in pathological
states (Kaczmarek, 2002). Kynurenergic manipulation proved
to attenuate the pathological elevation of c-Fos protein
expression in different experimental models (Knyihar-Csillik
et al., 2008). The direct intraplantar administration of KYNA
or the systemic administration of its precursor L-KYNs, can
effectively reduce the chemically-induced c-Fos expression level
in various pain models (Zhang et al., 2003; Knyihár-Csillik et al.,
2007a,b).

The multiple action of an elevated brain KYNA level on
neurotransmission may converge to an altered c-Fos level
and concomitant changes in neural function and behavior.
Fluctuations in the level of expression of c-Fos in the
brain are therefore to be expected following to L-KYNs
administration. It might also be suggested that a single treatment
affects the mouse brain plasticity owing to transcriptional
changes.

Conclusions

We have demonstrated the influence of treatment with a single
high dose of L-KYNs on the behavioral and neuronal activity
in C57Bl/6j mice in vivo. The main results from the present
experiments indicate that L-KYNs treatment does not affect
the general ambulatory activity, but alters the moving pattern
of the mice, elevating the moving velocity, and increasing
the proportion of resting time and anxiety-like behavior.
Furthermore, the treatment abolishes the formation of OR
memory. These behavioral abnormalities may be related to the
altered basal c-Fos protein expression and the imbalance of the
striatal and hippocampal neuronal activity.

The methods used during our experiments may be valuable
tools for future studies of the pathway of the KYN metabolism.

Acknowledgments

This study was supported by grant OTKA K105077 and co-
financed by the EUROHEADPAIN FP7-Health 2013-Innovation;
Grant No. 602633, and grant by MTA-SZTE Neuroscience
Research group.

Supplementary Material

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fnbeh.
2015.00157/abstract
Supplementary Figure 1 | Unique objects in the OR task were constructed

from Lego blocks that differed in shape and color.

Supplementary Figure 2 | Object exploration time in the sample and

choice phases in both animal groups.

References

Albuquerque, E. X., and Schwarcz, R. (2013). Kynurenic acid as an antagonist of
α7 nicotinic acetylcholine receptors in the brain: facts and challenges. Biochem.

Pharmacol. 85, 1027–1032. doi: 10.1016/j.bcp.2012.12.014
Alexander, K. S., Wu, H. Q., Schwarcz, R., and Bruno, J. P. (2012). Acute elevations

of brain kynurenic acid impair cognitive flexibility: normalization by the
alpha7 positive modulator galantamine. Psychopharmacology 220, 627–637.
doi: 10.1007/s00213-011-2539-2

Alkondon, M., Pereira, E. F. R., and Albuquerque, E. X. (2011). Endogenous
activation of nAChRs and NMDA receptors contributes to the excitability
of CA1 stratum radiatum interneurons in rat hippocampal slices:
effects of kynurenic acid. Biochem. Pharmacol. 82, 842–851. doi:
10.1016/j.bcp.2011.06.004

Alkondon, M., Pereira, E. F. R., Todd, S. W., Randall, W. R., Lane, M. V.,
and Albuquerque, E. X. (2015). Functional G-protein-coupled receptor 35
is expressed by neurons in the CA1 field of the hippocampus. Biochem.

Pharmacol. 93, 506–519. doi: 10.1016/j.bcp.2014.12.009
Assini, F. L., Duzzioni, M., and Takahashi, R. N. (2009). Object location memory

in mice: pharmacological validation and further evidence of hippocampal CA1
participation. Behav. Brain Res. 204, 206–211. doi: 10.1016/j.bbr.2009.06.005

Banerjee, J., Alkondon, M., and Albuquerque, E. X. (2012). Kynurenic acid
inhibits glutamatergic transmission to CA1 pyramidal neurons via a7
nAChR-dependent and -independent mechanisms. Biochem. Pharmacol. 84,
1078–1087. doi: 10.1016/j.bcp.2012.07.030

Baran, H., Jellinger, K., and Deecke, L. (1999). Kynurenine metabolism
in Alzheimer’s disease. J. Neural Transm. 106, 165–181. doi:
10.1007/s007020050149

Battaglia, F. P., Benchenane, K., Sirota, A., Pennartz, C.M., andWiener, S. I. (2011).
The hippocampus: hub of brain network communication for memory. Trends
Cogn. Sci. 15, 310–318. doi: 10.1016/j.tics.2011.05.008

Beadle, G.W., Mitchell, H. K., and Nyc, J. F. (1947). Kynurenine as an intermediate
in the formation of nicotinic acid from tryptophane by Neurospora. Proc. Natl.
Acad. Sci. U.S.A. 33, 155–158. doi: 10.1073/pnas.33.6.155

Beal, M. F., Matson, W. R., Storey, E., Milbury, P., Ryan, E. A., Ogawa, T.,
et al. (1992). Kynurenic acid concentrations are reduced in Huntington’s
disease cerebral cortex. J. Neurol. Sci. 108, 80–87. doi: 10.1016/0022-510X(92)
90191-M

Beal, M. F., Matson, W. R., Swartz, K. J., Gamache, P. H., and Bird, E. D. (1990).
Kynurenine pathway measurements in Huntington’s disease striatum: evidence
for reduced formation of kynurenic acid. J. Neurochem. 55, 1327–1339. doi:
10.1111/j.1471-4159.1990.tb03143.x

Beggiato, S., Tanganelli, S., Fuxe, K., Antonelli, T., Schwarcz, R., and
Ferraro, L. (2014). Endogenous kynurenic acid regulates extracellular GABA
levels in the rat prefrontal cortex. Neuropharmacology 82, 11–18. doi:
10.1016/j.neuropharm.2014.02.019

Beninger, R., and Olmstead, M. (2000). “The role of dopamine in the control of
locomotor activity and reward-related incentive learning,” in Brain Dynamics

and the Striatal Complex, eds R. Miller and J. Wickens (Amsterdam, NL:
Harwood Academic Press), 29–50.

Frontiers in Behavioral Neuroscience | www.frontiersin.org 8 June 2015 | Volume 9 | Article 157

http://journal.frontiersin.org/article/10.3389/fnbeh.2015.00157/abstract
http://journal.frontiersin.org/article/10.3389/fnbeh.2015.00157/abstract
http://journal.frontiersin.org/article/10.3389/fnbeh.2015.00157/abstract
http://journal.frontiersin.org/article/10.3389/fnbeh.2015.00157/abstract
http://journal.frontiersin.org/article/10.3389/fnbeh.2015.00157/abstract
http://journal.frontiersin.org/article/10.3389/fnbeh.2015.00157/abstract
http://journal.frontiersin.org/article/10.3389/fnbeh.2015.00157/abstract
http://journal.frontiersin.org/article/10.3389/fnbeh.2015.00157/abstract
http://journal.frontiersin.org/article/10.3389/fnbeh.2015.00157/abstract
http://journal.frontiersin.org/article/10.3389/fnbeh.2015.00157/abstract
http://journal.frontiersin.org/article/10.3389/fnbeh.2015.00157/abstract
http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Varga et al. Effects of kynurenine treatment in mice

Berlinguer-Palmini, R., Masi, A., Narducci, R., Cavone, L., Maratea, D., Cozzi, A.,
et al. (2013). GPR35 activation reduces Ca2+ transients and contributes to the
kynurenic acid-dependent reduction of synaptic activity at CA3-CA1 synapses.
PLoS ONE 8:e82180. doi: 10.1371/journal.pone.0082180

Bertaina-Anglade, V., Enjuanes, E., Morillon, D., and Drieu la Rochelle, C.
(2006). The object recognition task in rats and mice: a simple and rapid
model in safety pharmacology to detect amnesic properties of a new chemical
entity. J. Pharmacol. Toxicol. Methods 54, 99–105. doi: 10.1016/j.vascn.2006.
04.001

Birch, P. J., Grossman, C. J., and Hayes, A. G. (1988). Kynurenic acid antagonises
responses to NMDA via an action at the strychnine-insensitive glycine receptor.
Eur. J. Pharmacol. 154, 85–87. doi: 10.1016/0014-2999(88)90367-6

Bonsi, P., Cuomo, D., Martella, G., Madeo, G., Schirinzi, T., Puglisi, F., et al. (2011).
Centrality of striatal cholinergic transmission in Basal Ganglia function. Front.
Neuroanat. 5:6. doi: 10.3389/fnana.2011.00006

Campbell, B. M., Charych, E., Lee, A. W., and Möller, T. (2014). Kynurenines in
CNS disease: regulation by inflammatory cytokines. Front. Neurosci. 8:12. doi:
10.3389/fnins.2014.00012

Carola, V., D’Olimpio, F., Brunamonti, E., Mangia, F., and Renzi, P. (2002).
Evaluation of the elevated plus-maze and open-field tests for the assessment
of anxiety-related behaviour in inbred mice. Behav. Brain Res. 134, 49–57. doi:
10.1016/S0166-4328(01)00452-1

Carpenedo, R., Pittaluga, A., Cozzi, A., Attucci, S., Galli, A., Raiteri, M., et al.
(2001). Presynaptic kynurenate-sensitive receptors inhibit glutamate release.
Eur. J. Neurosci. 13, 2141–2147. doi: 10.1046/j.0953-816x.2001.01592.x

Chauvel, V., E., Vamos, A., Pardutz, L., Vecsei, J., and Schoenen, and Multon,
S. (2012). Effect of systemic kynurenine on cortical spreading depression
and its modulation by sex hormones in rat. Exp. Neurol. 236, 207–214. doi:
10.1016/j.expneurol.2012.05.002

Chess, A. C., Simoni, M. K., Alling, T. E., and Bucci, D. J. (2007). Elevations
of endogenous kynurenic acid produce spatial working memory deficits.
Schizophr. Bull. 33, 797–804. doi: 10.1093/schbul/sbl033

Cohen, S. J., Munchow, A. H., Rios, L. M., Zhang, G., Ásgeirsdóttir, H. N., and
Stackman, R. W. (2013). The rodent hippocampus is essential for nonspatial
object memory. Curr. Biol. 23, 1685–1690. doi: 10.1016/j.cub.2013.07.002

Connor, T. J., Starr, N., O’Sullivan, J. B., and Harkin, A. (2008). Induction of
indolamine 2,3-dioxygenase and kynurenine 3-monooxygenase in rat brain
following a systemic inflammatory challenge: a role for IFN-gamma? Neurosci.
Lett. 441, 29–34. doi: 10.1016/j.neulet.2008.06.007

Cosi, C., Mannaioni, G., Cozzi, A., Carl, V., Sili, M., Cavone, L., et al.
(2011). G-protein coupled receptor 35 (GPR35) activation and inflammatory
pain: studies on the antinociceptive effects of kynurenic acid and zaprinast.
Neuropharmacology 60, 1227–1231. doi: 10.1016/j.neuropharm.2010.11.014

Cousins, M. S., Sokolowski, J. D., and Salamone, J. D. (1993). Different effects
of nucleus accumbens and ventrolateral striatal dopamine depletions on
instrumental response selection in the rat. Pharmacol. Biochem. Behav. 46,
943–951. doi: 10.1016/0091-3057(93)90226-J

DeAngeli, N. E., Todd, T. P., Chang, S. E., Yeh, H. H., Yeh, P. W., and Bucci,
D. J. (2015). Exposure to kynureninc acid during adolescence increases sign-
tracking and impaires long-term potentiation in adulthood. Front. Behav.
Neurosci. 8:451. doi: 10.3389/fnbeh.2014.00451

Dere, E., Huston, J. P., and De Souza Silva, M. A. (2007). The pharmacology,
neuroanatomy and neurogenetics of one-trial object recognition in rodents.
Neurosci. Biobehav. Rev. 31, 673–704. doi: 10.1016/j.neubiorev.2007.01.005

Freeze, B. S., Kravitz, A. V., Hammack, N., Berke, J. D., and Kreitzer, A. C. (2013).
Control of basal ganglia output by direct and indirect pathway projection
neurons. J. Neurosci. 33, 18531–18539. doi: 10.1523/JNEUROSCI.1278-13.2013

Fujigaki, S., Saito, K., Takemura, M., Fujii, H., Wada, H., Noma, A., et al.
(1998). Species differences in L-tryptophan-kynurenine pathway metabolism:
quantification of anthranilic acid and its related enzymes. Arch. Biochem.

Biophys. 358, 329–335. doi: 10.1006/abbi.1998.0861
Gál, E. M., and Sherman, A. D. (1980). L-kynurenine: its synthesis and

possible regulatory function in brain. Neurochem. Res. 5, 223–239. doi:
10.1007/BF00964611

Gellért, L., Fuzik, J., Göblös, A., Sárközi, K., Marosi, M., Kis, Z., et al.
(2011). Neuroprotection with a new kynurenic acid analog in the four-
vessel occlusion model of ischemia. Eur. J. Pharmacol. 667, 182–187. doi:
10.1016/j.ejphar.2011.05.069

Gigler, G., Szénási, G., Simó, A., Lévay, G., Hársing, L. G., Sas, K., et al.
(2007). Neuroprotective effect of L-kynurenine sulfate administered before
focal cerebral ischemia in mice and global cerebral ischemia in gerbils. Eur. J.
Pharmacol. 564, 116–122. doi: 10.1016/j.ejphar.2007.02.029

Gong, C.-Y., Li, Z., Wang, H.-M., Liu, J., Chen, L., Zhang, H.-W., et al.
(2011). Targeting the kynurenine pathway as a potential strategy to
prevent and treat Alzheimer’s disease. Med. Hypotheses 77, 383–385. doi:
10.1016/j.mehy.2011.05.022

Greenberg, M. E., Ziff, E. B., and Greene, L. A. (1986). Stimulation of neuronal
acetylcholine receptors induces rapid gene transcription. Science 234, 80–83.
doi: 10.1126/science.3749894

Guidetti, P., Eastman, C. L., and Schwarcz, R. (1995). Metabolism of [5-
3H]kynurenine in the rat brain in vivo: evidence for the existence of a functional
kynurenine pathway. J. Neurochem. 65, 2621–2632. doi: 10.1046/j.1471-
4159.1995.65062621.x

Guidetti, P., Okuno, E., and Schwarcz, R. (1997). Characterization of rat brain
kynurenine aminotransferases I and II. J. Neurosci. Res. 50, 457–465.

Guillemin, G. J., Kerr, S. J., Smythe, G. A., Smith, D. G., Kapoor, V., Armati, P. J.,
et al. (2001). Kynurenine pathway metabolism in human astrocytes: a paradox
for neuronal protection. J. Neurochem. 78, 842–853. doi: 10.1046/j.1471-
4159.2001.00498.x

Hammond, R. S., Tull, L. E., and Stackman, R. W. (2004). On the delay-dependent
involvement of the hippocampus in object recognition memory. Neurobiol.
Learn. Mem. 82, 26–34. doi: 10.1016/j.nlm.2004.03.005

Heidelberg, C., Gulberg, M. E., Morgan, A. F., and Lepkovsky, S. (1949).
Tryptophan metabolism I. Concerning the mechanism of the mammalian
conversion of tryptophan into kynurenine, kynurenic acid, and nicotinic acid.
J. Biol. Chem. 179, 143–150.

Heyes, M. P., and Nowak, T. S. Jr. (1990). Delayed increases in regional brain
quinolinic acid follow transient ischemia in the gerbil. J. Cereb. Blood Flow

Metab. 10, 660–667. doi: 10.1038/jcbfm.1990.119
Hilmas, C., Pereira, E. F., Alkondon, M., Rassoulpour, A., Schwarcz, R., and

Albuquerque, E. X. (2001). The brain metabolite kynurenic acid inhibits
alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor
expression: physiopathological implications. J. Neurosci. 21, 7463–7473.

Kaczmarek, L. (2002). “c-Fos in learning: beyond the mapping of neuronal
activity,” in Handbook of Chemical Neuroanatomy, eds L. Kaczmarek and H.
A. Robertson (Stockholm, SE: Elsevier), 189–215.
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