17 research outputs found

    CLP1 Founder Mutation Links tRNA Splicing and Maturation to Cerebellar Development and Neurodegeneration

    Get PDF
    SummaryNeurodegenerative diseases can occur so early as to affect neurodevelopment. From a cohort of more than 2,000 consanguineous families with childhood neurological disease, we identified a founder mutation in four independent pedigrees in cleavage and polyadenylation factor I subunit 1 (CLP1). CLP1 is a multifunctional kinase implicated in tRNA, mRNA, and siRNA maturation. Kinase activity of the CLP1 mutant protein was defective, and the tRNA endonuclease complex (TSEN) was destabilized, resulting in impaired pre-tRNA cleavage. Germline clp1 null zebrafish showed cerebellar neurodegeneration that was rescued by wild-type, but not mutant, human CLP1 expression. Patient-derived induced neurons displayed both depletion of mature tRNAs and accumulation of unspliced pre-tRNAs. Transfection of partially processed tRNA fragments into patient cells exacerbated an oxidative stress-induced reduction in cell survival. Our data link tRNA maturation to neuronal development and neurodegeneration through defective CLP1 function in humans

    Fusion of the transcription factor TFE3 gene to a novel gene, PRCC, in t(X;1)(p11;q21)-positive papillary renal cell carcinomas

    Get PDF
    The (X;1)(p11;q21) translocation is a recurrent chromosomal abnormality in a subset of human papillary renal cell carcinomas, and is sometimes the sole cytogenetic abnormality present. Via positional cloning, we were able to identify the genes involved. The translocation results in a fusion of the transcription factor TFE3 gene on the X chromosome to a novel gene, designated PRCC, on chromosome 1. Through this fusion, reciprocal translocation products are formed, which are both expressed in papillary renal cell carcinomas. PRCC is ubiquitously expressed in normal adult and fetal tissues and encodes a putative protein of 491 aa with a relatively high content of prolines. No relevant homologies with known sequences at either the DNA or the protein level were found

    Do collision tumors of the gastroesophageal junction exist? A molecular analysis

    No full text
    Collision tumors are thought to arise from the accidental meeting of two independent tumors. Here we present five gastroesophageal junction tumors consisting of two collision tumors and three composite tumors (characterized by two divergent lineages originating from the same neoplastic clonal proliferation), as diagnosed on histology. In an attempt to prove this distinction at a genetic level, we performed TP53 sequence analysis and p53 immunohistochemistry. In addition, loss of heterozygosity (LOH) analysis using 10 microsatellite markers was carried out. An identical TP53 mutation and a similar pattern of retention and LOH were found in both neoplastic components of the presumed collision tumors, suggesting that both components are derived from a single precursor cell that undergoes divergent differentiation in the evolution of the tumor. In the composite group, 1 case had a genetic basis for the possible diagnosis of a collision tumor, with a TP53 mutation in the adenocarcinoma component only, and a different pattern of retention and loss of heterozygosity. These findings imply that it is not possible to recognize true collision tumors from immunohistologic appearance alone and suggest that the long-standing histologic criteria for the diagnosis of these neoplasms have no molecular basi

    Early-onset gastric carcinomas display molecular characteristics distinct from gastric carcinomas occurring at a later age

    No full text
    Gastric cancer is thought to result from a combination of environmental factors and accumulation of specific genetic alterations, and consequently mainly affects older patients (>50 years of age). Fewer than 10% of patients present with the disease before 45 years of age and these young patients are thought to develop carcinomas with a different molecular genetic profile from that of sporadic carcinomas occurring at a later age. Forty early-onset gastric carcinoma resection specimens were characterized for microsatellite instability (MSI) and loss of heterozygosity status using 22 polymorphic microsatellite markers. Twenty-four biopsies were additionally evaluated for the presence of MSI. No MSI was observed in any of the cases analysed. Losses were infrequent, but were most common for the D1S234 (26.1%) and D1S1676 (17.4%) markers, flanking the RUNX3 gene; for the p53ALU (23.1%) and TP53 (15.4%) markers, near the TP53 gene; and for the D16S2624 (17.2%) marker, near the E-cadherin (CDH1) gene. All cases with loss of CDH1, as well as 6/7 cases with loss of TP53, displayed aberrant staining of the corresponding proteins, pointing to a functional role for these proteins in early-onset gastric carcinogenesis. No germline CDH1, TP53 or RUNX3 mutations were detected in any of the cases analysed. No correlation was observed between non-functional E-cadherin and the histological type of the tumours analysed. Finally, Epstein-Barr virus was not detected in any of the cases analysed. On the basis of these results, early-onset gastric carcinomas appear to have characteristics distinct from gastric carcinomas occurring at a later age. Copyright (C) 2004 Pathological Society of Great Britain and Ireland. Published by John Wiley Sons, Lt

    Nasal polyposis in Peutz–Jeghers syndrome: a distinct histopathological and molecular genetic entity

    No full text
    BACKGROUND: Peutz-Jeghers syndrome (PJS) is an autosomal dominant hamartomatous polyposis syndrome of the gastrointestinal tract, caused by a germline STK11/LKB1 mutation. Nasal polyposis was described in the original report by Peutz. Recently, a molecular-genetic association between nasal polyposis and PJS has been reported. OBJECTIVE: To further explore the occurrence and pathogenesis of PJS-related nasal polyposis. METHODS: 51 patients with PJS, 84 unaffected family members and 36 spouses from 18 families with PJS were questioned for the presence of nasal polyposis. 12 PJS-related nasal polyps, 1 carcinoma of the nasal cavity and 28 sporadic nasal polyps were analysed for loss of (wild type) STK11/LKB1, eosinophilia, squamous metaplasia, dysplasia and expression of cyclo-oxygenase 2 and p53. RESULTS: Nasal polyps occurred in 8 of 51 patients with PJS, and were not reported by non-affected family members (p <0.001). Germline STK11/LKB1 mutations were identified in all patients with PJS and nasal polyposis. Loss of heterozygosity was found in four of eight PJS-related nasal polyps, but not in sporadic nasal polyps (p = 0.002). PJS-related nasal polyps showed less eosinophilia than sporadic nasal polyps (p <0.001). Expression of cyclo-oxygenase 2 was found in 11 of 12 PJS-related nasal polyps and 19 of 28 sporadic nasal polyps (p>0.05). Overexpression of p53 was not found. CONCLUSIONS: Nasal polyposis occurs in a significant number of Dutch patients with PJS, one of whom developed a carcinoma in the nasal cavity. The loss of heterozygosity, and the absence of eosinophilia suggest a distinct pathogenesis compared with sporadic nasal polyposi

    Pontine tegmental cap dysplasia: a novel brain malformation with a defect in axonal guidance

    No full text
    Four unrelated children are described with an identical brainstem and cerebellar malformation on MRI. The key findings are: vermal hypoplasia, subtotal absence of middle cerebellar peduncles, flattened ventral pons, vaulted pontine tegmentum, molar tooth aspect of the pontomesencephalic junction and absent inferior olivary prominence. Peripheral hearing impairment is present in all. Variable findings are: horizontal gaze palsy (1/4), impaired swallowing (2/4), facial palsy (3/4), bilateral sensory trigeminal nerve involvement (1/4), ataxia (2/4). Bony vertebral anomalies are found in 3/4. Additional MR studies in one patient using diffusion tensor imaging (DTI) with colour coding and fibre tracking revealed an ectopic transverse fibre bundle at the site of the pontine tegmentum and complete absence of transverse fibres in the ventral pons. The combined findings indicate an embryonic defect in axonal growth and guidance. Phenotypic analogy to mice with homozygous inactivation of Ntn1 encoding the secreted axonal guidance protein netrin1, or Dcc encoding its receptor Deleted in Colorectal Cancer led us to perform sequence analysis of NTN1 and DCC in all the patients. No pathogenic mutations were found. For the purpose of description the name 'pontine tegmental cap dysplasia' (PTCD) is proposed for the present malformation, referring to its most distinguishing feature on routine MR
    corecore