47 research outputs found

    Effects of observing hand motor action on number processing: an online study

    Get PDF
    In this online study we hypothesized that hand pointing might specifically contribute to the processing of number ordinality, since we learn to list, order, and count series of items through pointing. To test this hypothesis, we asked participants to observe hand pointing or grasping prior to executing number comparison. In experiment 1, participants (N=77) indicated whether a number was larger/smaller than a reference number (magnitude task), therefore processing number cardinality. In Experiment 2, participants (N=75) processed number ordinality, judging whether a number came before/after a reference number in a mental number line (order task). The results showed that response times in the magnitude task (Exp. 1) were faster after grasping as compared to pointing. In the order task (Exp. 2), response times did not differ between grasping and pointing conditions. These results suggest that hand action contribute to specific aspects of numerical processing, in line with embodied accounts of cognition

    Ecological Meanings: A Consensus Paper on Individual Differences and Contextual Influences in Embodied Language

    Get PDF
    Embodied theories of cognition consider many aspects of language and other cognitive domains as the result of sensory and motor processes. In this view, the appraisal and the use of concepts are based on mechanisms of simulation grounded on prior sensorimotor experiences. Even though these theories continue receiving attention and support, increasing evidence indicates the need to consider the flexible nature of the simulation process, and to accordingly refine embodied accounts. In this consensus paper, we discuss two potential sources of variability in experimental studies on embodiment of language: individual differences and context. Specifically, we show how factors contributing to individual differences may explain inconsistent findings in embodied language phenomena. These factors include sensorimotor or cultural experiences, imagery, context-related factors, and cognitive strategies. We also analyze the different contextual modulations, from single words to sentences and narratives, as well as the top-down and bottom-up influences. Similarly, we review recent efforts to include cultural and language diversity, aging, neurodegenerative diseases, and brain disorders, as well as bilingual evidence into the embodiment framework. We address the importance of considering individual differences and context in clinical studies to drive translational research more efficiently, and we indicate recommendations on how to correctly address these issues in future research. Systematically investigating individual differences and context may contribute to understanding the dynamic nature of simulation in language processes, refining embodied theories of cognition, and ultimately filling the gap between cognition in artificial experimental settings and cognition in the wild (i.e., in everyday life)

    Distance in Depth: A comparison of explicit and implicit numerical distances in the horizontal and radial dimensions.

    No full text
    Numbers are a constant presence in our daily lives: A brain devoid of the ability to process numbers would not be functional in its external environment. Comparing numerical magnitudes is a fundamental ability that requires the processing of numerical distances. From magnitude comparison tasks, a comparison distance effect (DE) emerges: It describes better performance when comparing numerically distant rather than close numbers. Unlike other signatures of number processing, the comparison DE has been assessed only implicitly, with numerical distance as non-salient task property. Different assessments permit identification of different cognitive processes underlying a specific effect. To investigate whether explicit and implicit assessment of the comparison DE influence numerical cognition differently, we introduced the Distance classification task, involving explicit classification of numbers as close or far from a reference. N=93 healthy adults classified numbers either by magnitude or by numerical distance. To investigate associations between numerical and physical distance, response buttons were positioned horizontally (Experiment 1) or radially (Experiment 2). In both experiments, there was an advantage for both the closest and farthest numbers with respect to the reference during distance classification, but not during magnitude classification. In Experiment 2, numerically close/far numbers were classified faster with the close/far response button, respectively, suggesting radial correspondence between physical and representational distances. These findings provide new theoretical and methodological insights into the mental representation of numbers

    Contribution of visuospatial attention, short-term memory and executive functions to performance in number interval bisection

    No full text
    Number interval bisection consists of estimating the mid-number within a pair (1–9=>5). Healthy adults and right-brain damage patients can show biased performance in this task, underestimating and overestimating the mid-number, respectively. The role of visuospatial attention during this task, and its interplay with other cognitive abilities (e.g. working memory) is still object of debate. In this study we explored the relation between visuospatial attention and individual differences in working memory and executive functions during number interval bisection. To manipulate the deployment of visuospatial attention, healthy participants tracked a dot moving to the left or moving to the right while bisecting numerical intervals. We also collected information concerning verbal and visuospatial short-term memory span, and concerning verbal and visuospatial fluency scores. Beside replicating what is typically observed in this task (e.g. underestimation bias), a correlation was observed between verbal short-term memory and bisection bias, and an interesting relation between performance in the number interval bisection, verbal short-term memory, and visuospatial attention. Specifically, performance of those participants with low verbal span was affected by the direction of the moving dot, underestimating at a larger extent when the dot moved leftward than rightward. Finally, it was also observed that participants’ verbal fluency ability contributed in the generation of biases in the numerical task. The finding of the involvement of abilities belonging to the verbal domain contributes to unveil the multi-componential nature of number interval bisection. Considering the debate on the nature of number interval bisection and its use in the clinical assessment of deficits following brain damage, this finding may be interesting also from a clinical perspective.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Voluntary eye movements direct attention on the mental number space

    No full text
    Growing evidence suggests that orienting visual attention in space can influence the processing of numerical magnitude, with leftward orienting speeding up the processing of small numbers relative to larger ones and the converse for rightward orienting. The manipulation of eye movements is a convenient way to direct visuospatial attention, but several aspects of the complex relationship between eye movements, attention orienting and number processing remain unexplored. In a previous study, we observed that inducing involuntary, reflexive eye movements by means of optokinetic stimulation affected number processing only when numerical magnitude was task relevant (i.e. during magnitude comparison, but not during parity judgment; Ranzini et al. in J Cogn Psychol 27, 459–470, (2015). Here, we investigated whether processing of task-irrelevant numerical magnitude can be modulated by voluntary eye movements, and whether the type of eye movements (smooth pursuit vs. saccades) would influence this interaction. Participants tracked with their gaze a dot while listening to a digit. The numerical task was to indicate whether the digit was odd or even through non-spatial, verbal responses. The dot could move leftward or rightward either continuously, allowing tracking by smooth pursuit eye movements, or in discrete steps across a series of adjacent locations, triggering a sequence of saccades. Both smooth pursuit and saccadic eye movements similarly affected number processing and modulated response times for large numbers as a function of direction of motion. These findings suggest that voluntary eye movements redirect attention in mental number space and highlight that eye movements should play a key factor in the investigation of number–space interactions.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Nomina sunt consequentia rerum - Sound-shape correspondences with every-day objects figures

    No full text
    Prior research on sound-symbolism has demonstrated the existence of sound-shape correspondences using ad hoc figures in double forced-choice paradigms. This led sound-symbolic skeptics to affirm that the reported effects were due to the properties of the figures shown or to the structure of the task used. In the present study, we hypothesized that the sound-shape correspondence effect would be observed when participants were required to choose which of two invented words would better suit an image representing a common object/entity. In addition, we hypothesized that the effect would be modulated by the object/entity category, and that natural objects would be represented with smoother shapes compared to artifacts. Results confirmed the "classic" takete-maluma effect both when participants chose a name for figures of natural objects (e.g. leaf) and artifacts (e.g. fork), and when they chose a name for figures of natural (e.g. animals) and artificial agents (e.g. robots). Moreover, when participants had to name agents, a modulation of the category (artificial vs. natural) emerged: sound-shape correspondence was not observed with robots, which were associated more often with jagged responses despite their actual shape. Results are discussed in the framework of embodied cognition theories. © 2014 Elsevier Inc.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore