23 research outputs found

    Contribution of Autonomic Reflexes to the Hyperadrenergic State in Heart Failure

    Get PDF
    Heart failure (HF) is a complex syndrome representing the clinical endpoint of many cardiovascular diseases of different etiology. Given its prevalence, incidence and social impact, a better understanding of HF pathophysiology is paramount to implement more effective anti-HF therapies. Based on left ventricle (LV) performance, HF is currently classified as follows: (1) with reduced ejection fraction (HFrEF); (2) with mid-range EF (HFmrEF); and (3) with preserved EF (HFpEF). A central tenet of HFrEF pathophysiology is adrenergic hyperactivity, featuring increased sympathetic nerve discharge and a progressive loss of rhythmical sympathetic oscillations. The role of reflex mechanisms in sustaining adrenergic abnormalities during HFrEF is increasingly well appreciated and delineated. However, the same cannot be said for patients affected by HFpEF or HFmrEF, whom also present with autonomic dysfunction. Neural mechanisms of cardiovascular regulation act as "controller units," detecting and adjusting for changes in arterial blood pressure, blood volume, and arterial concentrations of oxygen, carbon dioxide and pH, as well as for humoral factors eventually released after myocardial (or other tissue) ischemia. They do so on a beat-to-beat basis. The central dynamic integration of all these afferent signals ensures homeostasis, at rest and during states of physiological or pathophysiological stress. Thus, the net result of information gathered by each controller unit is transmitted by the autonomic branch using two different codes: intensity and rhythm of sympathetic discharges. The main scope of the present article is to (i) review the key neural mechanisms involved in cardiovascular regulation; (ii) discuss how their dysfunction accounts for the hyperadrenergic state present in certain forms of HF; and (iii) summarize how sympathetic efferent traffic reveal central integration among autonomic mechanisms under physiological and pathological conditions, with a special emphasis on pathophysiological characteristics of HF

    Exercise training prevents the deterioration in the arterial baroreflex control of sympathetic nerve activity in chronic heart failure patients

    Get PDF
    Arterial baroreflex control of muscle sympathetic nerve activity (ABRMSNA) is impaired in chronic systolic heart failure (CHF). the purpose of the study was to test the hypothesis that exercise training would improve the gain and reduce the time delay of ABRMSNA in CHF patients. Twenty-six CHF patients, New York Heart Association Functional Class II-III, EF <= 40%, peak (V) over dot O-2 <= 20 ml.kg(-1).min(-1) were divided into two groups: untrained (UT, n = 13, 57 +/- 3 years) and exercise trained (ET, n = 13, 49 +/- 3 years). Muscle sympathetic nerve activity (MSNA) was directly recorded by microneurography technique. Arterial pressure was measured on a beat-to-beat basis. Time series of MSNA and systolic arterial pressure were analyzed by autoregressive spectral analysis. the gain and time delay of ABRMSNA was obtained by bivariate autoregressive analysis. Exercise training was performed on a cycle ergometer at moderate intensity, three 60-min sessions per week for 16 wk. Baseline MSNA, gain and time delay of ABRMSNA, and low frequency of MSNA (LFMSNA) to high-frequency ratio (HFMSNA) (LFMSNA/HFMSNA) were similar between groups. ET significantly decreased MSNA. MSNA was unchanged in the UT patients. the gain and time delay of ABRMSNA were unchanged in the ET patients. in contrast, the gain of ABRMSNA was significantly reduced [3.5 +/- 0.7 vs. 1.8 +/- 0.2, arbitrary units (au)/mmHg, P = 0.04] and the time delay of ABRMSNA was significantly increased (4.6 +/- 0.8 vs. 7.9 +/- 1.0 s, P = 0.05) in the UT patients. LFMSNA-to-HFMSNA ratio tended to be lower in the ET patients (P < 0.08). Exercise training prevents the deterioration of ABRMSNA in CHF patients.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundacao ZerbiniCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)National Heart, Lung, and Blood InstituteUniv São Paulo, Sch Med, Heart Inst InCor, São Paulo, BrazilUniv São Paulo, Sch Phys Educ & Sport, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Med, Div Cardiol, São Paulo, BrazilUniv Calif Los Angeles, David Geffen Sch Med, Dept Med Cardiol & Physiol, Los Angeles, CA 90095 USAUniversidade Federal de São Paulo, Dept Med, Div Cardiol, São Paulo, BrazilFAPESP: 2010/50048-1FAPESP: 140643/2009-5FAPESP: 2013/07651-7CNPq: 142366/2009-9CNPq: 301867/2010-0CNPq: 308068/2011-4FAPESP: 2013/15651-7National Heart, Lung, and Blood Institute: RO1-HL084525Web of Scienc

    Exaggerated Exercise Blood Pressure as a Marker of Baroreflex Dysfunction in Normotensive Metabolic Syndrome Patients

    Get PDF
    IntroductionExaggerated blood pressure response to exercise (EEBP = SBP ≥ 190 mmHg for women and ≥210 mmHg for men) during cardiopulmonary exercise test (CPET) is a predictor of cardiovascular risk. Sympathetic hyperactivation and decreased baroreflex sensitivity (BRS) seem to be involved in the progression of metabolic syndrome (MetS) to cardiovascular disease.ObjectiveTo test the hypotheses: (1) MetS patients within normal clinical blood pressure (BP) may present EEBP response to maximal exercise and (2) increased muscle sympathetic nerve activity (MSNA) and reduced BRS are associated with this impairment.MethodsWe selected MetS (ATP III) patients with normal BP (MetS_NT, n = 27, 59.3% males, 46.1 ± 7.2 years) and a control group without MetS (C, n = 19, 48.4 ± 7.4 years). We evaluated BRS for increases (BRS+) and decreases (BRS−) in spontaneous BP and HR fluctuations, MSNA (microneurography), BP from ambulatory blood pressure monitoring (ABPM), and auscultatory BP during CPET.ResultsNormotensive MetS (MetS_NT) had higher body mass index and impairment in all MetS risk factors when compared to the C group. MetS_NT had higher peak systolic BP (SBP) (195 ± 17 vs. 177 ± 24 mmHg, P = 0.007) and diastolic BP (91 ± 11 vs. 79 ± 10 mmHg, P = 0.001) during CPET than C. Additionally, we found that MetS patients with normal BP had lower spontaneous BRS− (9.6 ± 3.3 vs. 12.2 ± 4.9 ms/mmHg, P = 0.044) and higher levels of MSNA (29 ± 6 vs. 18 ± 4 bursts/min, P &lt; 0.001) compared to C. Interestingly, 10 out of 27 MetS_NT (37%) showed EEBP (MetS_NT+), whereas 2 out of 19 C (10.5%) presented (P = 0.044). The subgroup of MetS_NT with EEBP (MetS_NT+, n = 10) had similar MSNA (P = 0.437), but lower BRS+ (P = 0.039) and BRS− (P = 0.039) compared with the subgroup without EEBP (MetS_NT−, n = 17). Either office BP or BP from ABPM was similar between subgroups MetS_NT+ and MetS_NT−, regardless of EEBP response. In the MetS_NT+ subgroup, there was an association of peak SBP with BRS− (R = −0.70; P = 0.02), triglycerides with peak SBP during CPET (R = 0.66; P = 0.039), and of triglycerides with BRS− (R = 0.71; P = 0.022).ConclusionNormotensive MetS patients already presented higher peak systolic and diastolic BP during maximal exercise, in addition to sympathetic hyperactivation and decreased baroreflex sensitivity. The EEBP in MetS_NT with apparent well-controlled BP may indicate a potential depressed neural baroreflex function, predisposing these patients to increased cardiovascular risk

    Valor preditivo de variáveis ventilatórias e metabólicas para óbito em pacientes com insuficiência cardíaca Predictive value of ventilatory and metabolic variables for risk of death in patients with cardiac failure

    No full text
    OBJETIVO: Avaliar o valor preditivo de variáveis respiratórias, metabólicas e hemodinâmicas, no teste de esforço cardiopulmonar, para óbito em pacientes com insuficiência cardíaca. MÉTODOS: Foram estudados 87 pacientes em classe funcional II e III da NYHA, faixa etária de 51&plusmn;0,5 anos, dos quais 26 eram de etiologia chagásica, 30 isquêmica e 31 idiopática. O teste de esforço cardiopulmonar consistiu de protocolo em rampa com incremento de 5 a 15W/min, realizado em cicloergômetro, até a exaustão. RESULTADOS: A análise dos fatores de controle, realizada com regressão múltipla de Cox, mostrou que a idade, estatura, peso, superfície corporal e sexo não foram estatisticamente significativos. O consumo de oxigênio, o equivalente ventilatório de oxigênio, o equivalente ventilatório de dióxido de carbono, o pulso de oxigênio, a pressão parcial de dióxido de carbono ao final da expiração, no limiar anaeróbio, no ponto de compensação respiratória e no pico do exercício apresentaram-se como importantes preditores de óbito. A relação do aumento de dióxido de carbono como função da elevação da ventilação minuto e a relação do aumento do consumo de oxigênio e da elevação da carga de trabalho do início do exercício até o limiar anaeróbio apresentaram correlação estatisticamente significativa com óbito (p<0,05). CONCLUSÃO: O teste de esforço cardiopulmonar possibilita a avaliação de variáveis ventilatórias, metabólicas e hemodinâmicas, que podem ser utilizadas como marcadores importantes do prognóstico de vida, nesses pacientes.<br>OBJECTIVE: To analyze the predictive value of respiratory, metabolic, and hemodynamic variables obtained during the cardiopulmonary stress test for the risk of death in patients with heart failure. METHODS: Eighty-seven NYHA Functional Class II and III patients were analyzed, ages 51 &plusmn; 0.5 years, 26 of them with Chagas' disease, 30 with coronary ischemia, and 31 with idiopathic etiology. The cardiopulmonary stress test consisted of a ramp-protocol with 5 to 15 W/min workload increments performed on a bicycle-ergonometer until exhaustion. RESULTS: In this study, the multiple Cox regression analysis of age, height, weight, body surface, and gender showed that these parameters were not statistically significant control factors. Oxygen uptake, ventilatory equivalent of oxygen, ventilatory equivalent of carbon dioxide production, oxygen pulse, and end-tidal partial pressure of carbon dioxide at the anaerobic threshold, respiratory compensation point, and peak exercise proved to be important death predictors in heart failure patients. The relationship between the increase in carbon dioxide output as a function of the increase in minute ventilation, and the association between the oxygen uptake increase and the elevation of the workload from the beginning of exercise to the anaerobic threshold were statistically significant predictors of death in heart failure patients (p<0.05). CONCLUSION: The cardiopulmonary stress test makes it possible to evaluate ventilatory, metabolic, and hemodynamic variables that may be utilized as important markers of life prognosis in these patients

    Neurovascular control during exercise in acute coronary syndrome patients with Gln27Glu polymorphism of β2-adrenergic receptor.

    No full text
    BACKGROUND:Gln27Glu (rs1042714) polymorphism of the β2-adrenergic receptor (ADRB2) has been association with cardiovascular functionality in healthy subjects. However, it is unknown whether the presence of the ADRB2 Gln27Glu polymorphism influences neurovascular responses during exercise in patients with acute coronary syndromes (ACS). We tested the hypothesis that patients with ACS homozygous for the Gln allele would have increased muscle sympathetic nerve activity (MSNA) responses and decreased forearm vascular conductance (FVC) responses during exercise compared with patients carrying the Glu allele (Gln27Glu and Glu27Glu). In addition, exercise training would restore these responses in Gln27Gln patients. METHODS AND RESULTS:Thirty-days after an ischemic event, 61 patients with ACS without ventricular dysfunction were divided into 2 groups: (1) Gln27Gln (n = 35, 53±1years) and (2) Gln27Glu+Glu27Glu (n = 26, 52±2years). MSNA was directly measured using the microneurography technique, blood pressure (BP) was measured with an automatic oscillometric device, and blood flow was measured using venous occlusion plethysmography. MSNA, mean BP, and FVC were evaluated at rest and during a 3-min handgrip exercise. The MSNA (P = 0.02) and mean BP (P = 0.04) responses during exercise were higher in the Gln27Gln patients compared with that in the Gln27Glu+Glu27Glu patients. No differences were found in FVC. Two months of exercise training significantly decreased the MSNA levels at baseline (P = 0.001) and in their response during exercise (P = 0.02) in Gln27Gln patients, but caused no changes in Gln27Glu+Glu27Glu patients. Exercise training increased FVC responses in Gln27Glu+Glu27Glu patients (P = 0.03), but not in Gln27Gln patients. CONCLUSION:The exaggerated MSNA and mean BP responses during exercise suggest an increased cardiovascular risk in patients with ACS and Gln27Gln polymorphism. Exercise training emerges as an important strategy for restoring this reflex control. Gln27Glu polymorphism of ADRB2 influences exercise-induced vascular adaptation in patients with ACS

    Glu298Asp eNOS gene polymorphism causes attenuation in nonexercising muscle vasodilatation

    No full text
    Dias RG, Alves MJ, Pereira AC, Rondon MU, dos Santos MR, Krieger JE, Krieger MH, Negrao CE. Glu298Asp eNOS gene polymorphism causes attenuation in nonexercising muscle vasodilatation. Physiol Genomics 37: 99-107, 2009. First published January 21, 2009; doi:10.1152/physiolgenomics.90368.2008.-The influence of Glu298Asp endothelial nitric oxide synthase (eNOS) polymorphism in exercise-induced reflex muscle vasodilatation is unknown. We hypothesized that nonexercising forearm blood flow (FBF) responses during handgrip isometric exercise would be attenuated in individuals carrying the Asp298 allele. In addition, these responses would be mediated by reduced eNOS function and NO-mediated vasodilatation or sympathetic vasoconstriction. From 287 volunteers previously genotyped, we selected 33 healthy individuals to represent three genotypes: Glu/Glu [n = 15, age 43 +/- 3 yr, body mass index (BMI) 22.9 +/- 0.3 kg/m(2)], Glu/Asp (n = 9, age 41 +/- 3 yr, BMI 23.7 +/- 1.0 kg/m(2)), and Asp/Asp (n = 9, age 40 +/- 4 yr, BMI 23.5 +/- 0.9 kg/m(2)). Heart rate (HR), mean blood pressure (MBP), and FBF (plethysmography) were recorded for 3 min at baseline and 3 min during isometric handgrip exercise. Baseline HR, MBP, FBF, and forearm vascular conductance (FVC) were similar among genotypes. FVC responses to exercise were significantly lower in Asp/Asp when compared with Glu/Asp and Glu/Glu (Delta = 0.07 +/- 0.14 vs. 0.64 +/- 0.20 and 0.57 +/- 0.09 units, respectively; P = 0.002). Further studies showed that intra-arterial infusion of N(G)-monomethyl-L-arginine (L-NMMA) did not change FVC responses to exercise in Asp/Asp, but significantly reduced FVC in Glu/Glu (Delta = 0.79 +/- 0.14 vs. 0.14 +/- 0.09 units). Thus the differences between Glu/Glu and Asp/Asp were no longer observed (P = 0.62). L-NMMA + phentolamine increased similarly FVC responses to exercise in Glu/Glu and Asp/Asp (P = 0.43). MBP and muscle sympathetic nerve activity increased significant and similarly throughout experimental protocols in Glu/Glu and Asp/Asp. Individuals who are homozygous for the Asp298 allele of the eNOS enzyme have attenuated nonexercising muscle vasodilatation in response to exercise. This genotype difference is due to reduced eNOS function and NO-mediated vasodilatation, but not sympathetic vasoconstriction.FAPESP Fundacao de Amparo a Pesquisa do Estado de Sao Paulo[2005/59740-7]Fundacao ZerbiniFundacao de Amparo a Pesquisa do Estado de Sao Paulo FAPESP[04/14292-4]CNPq Conselho Nacional de Pesquisa[304304/2004-2]CNPq Conselho Nacional de Pesquisa[305159/2005-4

    Consequences of Comorbid Sleep Apnea in the Metabolic Syndrome—Implications for Cardiovascular Risk

    No full text
    Study Objectives: Metabolic syndrome (MetSyn) increases overall cardiovascular risk. MetSyn is also strongly associated with obstructive sleep apnea (OSA), and these 2 conditions share similar comorbidities. Whether OSA increases cardiovascular risk in patients with the MetSyn has not been investigated. We examined how the presence of USA in patients with MetSyn affected hemodynamic and autonomic variables associated with poor cardiovascular outcome. Design: Prospective clinical study. Participants: We studied 36 patients with MetSyn (ATP-III) divided into 2 groups matched for age and sex: (1) MetSyn+OSA (n = 18) and (2) MetSyn-OSA (n = 18). Measurements: USA was defined by an apnea-hypopnea index (AHI) > 15 events/hour by polysomnography. We recorded muscle sympathetic nerve activity (MSNA - microneurography), heart rate (HR), and blood pressure (BP - Finapres). Baroreflex sensitivity (BRS) was analyzed by spontaneous BP and HR fluctuations. Results: MSNA (34 +/- 2 vs 28 +/- 1 bursts/min, P = 0.02) and mean BP (111 +/- 3 vs. 99 +/- 2 mm Hg, P = 0.003) were higher in patients with MetSyn+OSA versus patients with MetSyn-USA. Patients with MetSyn+OSA had lower spontaneous BRS for increases (7.6 +/- 0.6 vs 12.2 +/- 1.2 msec/mm Hg, P = 0.003) and decreases (7.2 +/- 0.6 vs 11.9 +/- 1.6 msec/mm Hg, P = 0.01) in BP. MSNA was correlated with AHI (r = 0.48; P = 0.009) and minimum nocturnal oxygen saturation (r = -0.38, P = 0.04). Conclusion: Patients with MetSyn and comorbid USA have higher BP, higher sympathetic drive, and diminished BRS, compared with patients with MetSyn without USA. These adverse cardiovascular and autonomic consequences of USA may be associated with poorer outcomes in these patients. Moreover, increased BP and sympathetic drive in patients with MetSyn+OSA may be linked, in part, to impairment of baroreflex gain.Conselho Nacional de Pesquisa (CNPq)[476385/2006-7]Conselho Nacional de Pesquisa (CNPq)[304304/2004-2]Conselho Nacional de Pesquisa (CNPq)[305159/2005-4]Conselho Nacional de Pesquisa (CNPq)[306931/2006-0]Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)[2005/59740-7]Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)[2008/03714-6]Fundacao ZerbiniCoordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)National Institutes of Health (NIH)[HL65176]National Center for Research Resources (NCRR)[1 UL1 RR024150]NIH Roadmap for Medical Researc
    corecore