30 research outputs found

    A specific structure and high richness characterize intestinal microbiota of HIVexposed seronegative individuals

    Get PDF
    Intestinal microbiota facilitates food breakdown for energy metabolism and influences the im-mune response and maintaining mucosal homeostasis. Overall, HIV infection is associated with intestinal dysbiosis and immune activation, which has been related to seroconversion in HIV-exposed individuals. However, to date, it is unclear whether microbiota dysbiosis is the cause or the effect of immune alterations and disease progression. We characterize the intestinal microbiota and determine its association with immune regulation in HIV-exposed seronegative individuals (HESN), HIV-infected progressors (HIV+), and healthy control (HC) subjects. For this, feces and blood were collected. The microbiota composition of HESN showed a significantly higher alpha and beta diversity compared to HC, but similar to HIV+. A lower Treg percentage was observed in HESN than HC and HIV+, with enrichment of the genus Butyrivibrio being characteristic of this profile. Interestingly, an increase in Succinivibrio and Prevotella and a re-duction in Bacteroides genus were observed in HESN compared to HC, which is typical of HIV-infected individuals. Thus, HESNs have a microbiota profile, similar to that observed in HIV+, most likely because HESN are cohabiting with their HIV+ partners.Intestinal microbiota facilitates food breakdown for energy metabolism and influences the im-mune response and maintaining mucosal homeostasis. Overall, HIV infection is associated with intestinal dysbiosis and immune activation, which has been related to seroconversion in HIV-exposed individuals. However, to date, it is unclear whether microbiota dysbiosis is the cause or the effect of immune alterations and disease progression. We characterize the intestinal microbiota and determine its association with immune regulation in HIV-exposed seronegative individuals (HESN), HIV-infected progressors (HIV+), and healthy control (HC) subjects. For this, feces and blood were collected. The microbiota composition of HESN showed a significantly higher alpha and beta diversity compared to HC, but similar to HIV+. A lower Treg percentage was observed in HESN than HC and HIV+, with enrichment of the genus Butyrivibrio being characteristic of this profile. Interestingly, an increase in Succinivibrio and Prevotella and a re-duction in Bacteroides genus were observed in HESN compared to HC, which is typical of HIV-infected individuals. Thus, HESNs have a microbiota profile, similar to that observed in HIV+, most likely because HESN are cohabiting with their HIV+ partners.https://scienti.minciencias.gov.co/cvlac/EnProdArticulo/query.do?cod_producto=73&cod_rh=0000157775https://scholar.google.com.co/citations?hl=en&user=VLZxl1UAAAAJCOL0112548https://orcid.org/0000-0002-7351-873

    Evidence for the presence of multilineage chimerism and progenitors of donor dendritic cells in the peripheral blood of bone marrow-augmented organ transplant recipients

    Get PDF
    We have postulated that the donor leukocyte microchimerism plays a seminal role in the acceptance of allografts by inducing and perpetuating variable degree of donor-specific nonreactivity in long-surviving organ recipients. Limited information is available, however, concerning the phenotype and function of these chimeric cells in humans. The unequivocal presence of donor dendritic cells (DCs), a prominent lineage in the microchimerism observed in rodents and clinical organ recipients, was difficult to demonstrate in bone marrow (BM)-augmented organ transplant recipients. This enigma was resolved by the recent description of a method for propagating circulating human DCs from their progenitors by culture in a medium enriched with granulocyte-macrophage colony-stimulating factor and interleukin 4, a condition known to inhibit outgrowth of monocytes, thus providing a selective growth advantage to committed progenitors of the myeloid lineage. Cells from BM-augmented organ recipients and normal control subjects harvested from 12- to 14-day cultures exhibited dendritic morphology and potent allostimulatory capacity. Using appropriate primers, the presence of donor DNA was verified by polymerase chain reaction within the lineage(null)/class II(bright) sorted DC. Phenotypic analysis of cultured DCs from BM-augmented patients, unlike that of controls, exhibited a marked down- regulation of B7-1 (CD80) while retaining normal levels of expression of B7- 2 (CD86) cell surface molecules. The presence of donor DNA was also confirmed by polymerase chain reaction in individually sorted lineage+ (T, B, and NK) cells and macrophages, suggesting that the chimerism in BM-augmented patients is multilineage. The presence of progenitors of donor DCs in the peripheral blood of BM-augmented patients further substantiates the already convincing evidence of stem cell engraftment

    HIV-Induced T-Cell Activation/Exhaustion in Rectal Mucosa Is Controlled Only Partially by Antiretroviral Treatment

    Get PDF
    Peripheral blood T-cells from untreated HIV-1-infected patients exhibit reduced immune responses, usually associated with a hyperactivated/exhausted phenotype compared to HAART treated patients. However, it is not clear whether HAART ameliorates this altered phenotype of T-cells in the gastrointestinal-associated lymphoid tissue (GALT), the main site for viral replication. Here, we compared T-cells from peripheral blood and GALT of two groups of chronically HIV-1-infected patients: untreated patients with active viral replication, and patients on suppressive HAART. We characterized the T-cell phenotype by measuring PD-1, CTLA-4, HLA-DR, CD25, Foxp3 and granzyme A expression by flow cytometry; mRNA expression of T-bet, GATA-3, ROR-γt and Foxp3, and was also evaluated in peripheral blood mononuclear cells and rectal lymphoid cells. In HIV-1+ patients, the frequency of PD-1+ and CTLA-4+ T-cells (both CD4+ and CD8+ T cells) was higher in the GALT than in the blood. The expression of PD-1 by T-cells from GALT was higher in HIV-1-infected subjects with active viral replication compared to controls. Moreover, the expression per cell of PD-1 and CTLA-4 in CD4+ T-cells from blood and GALT was positively correlated with viral load. HAART treatment decreased the expression of CTLA-4 in CD8+ T cells from blood and GALT to levels similar as those observed in controls. Frequency of Granzyme A+ CD8+ T-cells in both tissues was low in the untreated group, compared to controls and HAART-treated patients. Finally, a switch towards Treg polarization was found in untreated patients, in both tissues. Together, these findings suggest that chronic HIV-1 infection results in an activated/exhausted T-cell phenotype, despite T-cell polarization towards a regulatory profile; these alterations are more pronounced in the GALT compared to peripheral blood, and are only partiality modulated by HAART

    Kidney/Bone Marrow Transplantation.

    Get PDF
    Within the past few years, a new conceptual view of transplantation has emerged, based on the observation that renal transplant recipients with extremely long (27-29 years) graft survival all have had evidence of donor cells in their peripheral blood, skin, and lymph nodes. They were thus chimeric. This led to the theory that chimerism is necessary for successful long-term engraftment. It also led to the next logical step of attempting to augment chimerism by transplanting donor bone marrow at the time of organ transplantation. Early reports of combined organ/bone marrow transplantation have suggested that it is safe and is associated with reasonable outcomes. In this paper, we discuss the outcome in the first 30 patients undergoing combined kidney/bone marrow transplantation

    Antiretroviral effect of lovastatin on HIV-1-infected individuals without highly active antiretroviral therapy (The LIVE study): a phase-II randomized clinical trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Highly active antiretroviral therapy produces a significant decrease in HIV-1 replication and allows an increase in the CD4 T-cell count, leading to a decrease in the incidence of opportunistic infections and mortality. However, the cost, side effects and complexity of antiretroviral regimens have underscored the immediate need for additional therapeutic approaches. Statins exert pleiotropic effects through a variety of mechanisms, among which there are several immunoregulatory effects, related and unrelated to their cholesterol-lowering activity that can be useful to control HIV-1 infection.</p> <p>Methods/design</p> <p>Randomized, double-blinded, placebo controlled, single-center, phase-II clinical trial. One hundred and ten chronically HIV-1-infected patients, older than 18 years and naïve for antirretroviral therapy (i.e., without prior or current management with antiretroviral drugs) will be enrolled at the outpatient services from the most important centres for health insurance care in Medellin-Colombia. The interventions will be lovastatin (40 mg/day, orally, for 12 months; 55 patients) or placebo (55 patients). Our primary aim will be to determine the effect of lovastatin on viral replication. The secondary aim will be to determine the effect of lovastatin on CD4+ T-cell count in peripheral blood. As tertiary aims we will explore differences in CD8+ T-cell count, expression of activation markers (CD38 and HLA-DR) on CD4 and CD8 T cells, cholesterol metabolism, LFA-1/ICAM-1 function, Rho GTPases function and clinical evolution between treated and not treated HIV-1-infected individuals.</p> <p>Discussion</p> <p>Preliminary descriptive studies have suggested that statins (lovastatin) may have anti HIV-1 activity and that their administration is safe, with the potential effect of controlling HIV-1 replication in chronically infected individuals who had not received antiretroviral medications. Considering that there is limited clinical data available on this topic, all these findings warrant further evaluation to determine if long-term administration of statins may benefit the virological and immunological evolution in HIV-1-infected individuals before the use of antiretroviral therapy is required.</p> <p>Trial registration</p> <p>Registration number NCT00721305.</p

    Vitamin D treatment of peripheral blood mononuclear cells modulated immune activation and reduced susceptibility to HIV-1 infection of CD4+ T lymphocytes.

    No full text
    IntroductionMucosal immune activation, in the context of sexual transmission of HIV-1 infection, is crucial, as the increased presence of activated T cells enhance susceptibility to infection. In this regard, it has been proposed that immunomodulatory compounds capable of modulating immune activation, such as Vitamin D (VitD) may reduce HIV-1 transmission and might be used as a safe and cost-effective strategy for prevention. Considering this, we examined the in vitro effect of the treatment of peripheral blood mononuclear cells (PBMCs) with the active form of VitD, calcitriol, on cellular activation, function and susceptibility of CD4+ T cells to HIV-1 infection.MethodsWe treated PBMCs from healthy HIV unexposed individuals (Co-HC) and frequently exposed, HIV-1 seronegative individuals (HESNs) from Colombia and from healthy non-exposed individuals from Canada (Ca-HC) with calcitriol and performed in vitro HIV-1 infection assays using X4- and R5-tropic HIV-1 strains respectively. In addition, we evaluated the activation and function of T cells and the expression of viral co-receptors, and select antiviral genes following calcitriol treatment.ResultsCalcitriol reduced the frequency of infected CD4+ T cells and the number of viral particles per cell, for both, X4- and R5-tropic viruses tested in the Co-HC and the Ca-HC, respectively, but not in HESNs. Furthermore, in the Co-HC, calcitriol reduced the frequency of polyclonally activated T cells expressing the activation markers HLA-DR and CD38, and those HLA-DR+CD38-, whereas increased the subpopulation HLA-DR-CD38+. Calcitriol treatment also decreased production of granzyme, IL-2 and MIP-1β by T cells and increased the transcriptional expression of the inhibitor of NF-kB and the antiviral genes cathelicidin (CAMP) and APOBEC3G in PBMCs from Co-HC.ConclusionOur in vitro findings suggest that VitD treatment could reduce HIV-1 transmission through a specific modulation of the activation levels and function of T cells, and the production of antiviral factors. In conclusion, VitD remains as an interesting potential strategy to prevent HIV-1 transmission that should be further explored

    HIV-1 interaction with human mannose receptor (hMR) induces production of matrix metalloproteinase 2 (MMP-2) through hMR-mediated intracellular signaling in astrocytes

    Get PDF
    AbstractAstrocytes are susceptible to HIV-1 infection. We have recently demonstrated that human mannose receptor (hMR) is directly involved in CD4-independent HIV-1 infection of astrocytes. The apparent paradox between the vivid binding affinity of HIV-1 gp120 protein to hMR and the low efficiency of hMR-mediated HIV-1 infection raises the possibility that HIV-1 binding to hMR alone may negatively affect astrocyte function. In this study, we examined the relationship between HIV-1 interaction with hMR and the production of matrix metalloproteinases (MMPs) in astrocytes. We took advantage of an astroglial cell line U87.MR stably expressing hMR as an in vitro astrocyte model system and human primary astrocytes, and demonstrated that HIV-1 binding to astrocytes induced the production of MMP-2. This induction appeared to be most potent with M-tropic HIV-1 viruses. Increased MMP-2 production was not due to hMR-mediated HIV-1 entry and/or HIV-1 viral gene expression, as the transfection of HIV-1 proviral DNA did not result in MMP-2 production, and the infection of AT-2-treated HIV-1 viruses did not inhibit MMP-2 production. Direct involvement of hMR in HIV-induced MMP-2 production was confirmed by the inhibition of the yeast mannan, an hMR ligand antagonist, and an anti-hMR serum. Furthermore, HIV-induced MMP-2 production in astrocytes was shown to involve hMR-mediated intracellular signaling. Taken together, these results suggest that HIV-1 binding to astrocytes in the absence of HIV-1 viral entry is sufficient to alter astrocyte function through hMR-mediated intracellular signaling. In addition, these results provide new evidence to support the notion that hMR is capable of eliciting intracellular signaling upon ligand binding

    Calcitriol decreases HIV-1 transfer in vitro from monocyte-derived dendritic cells to CD4 + T cells, and downregulates the expression of DC-SIGN and SIGLEC-1.

    No full text
    Dendritic cells (DCs) promote HIV-1 transmission by acting as Trojan horses, capturing viral particles, facilitating the infection of CD4+ T-cells. Vitamin D (VitD) has shown to decrease T cell activation, reducing susceptibility to HIV-1 infection of CD4+ T-cells in vitro; however, if VitD decreases viral transfer from DCs to CD4+ T-cells is unknown. In this study, we co-cultured HIV-1-pulsed immature and LPS mature monocytes-derived DCs (iDCs and LmDCs, respectively), differentiated in presence or absence of calcitriol (VitD active form), with PHA-activated autologous CD4+ T-cells from 16 healthy donors. In co-cultures of iDCs and LmDCs treated with calcitriol, there was a significant decrease in frequency of infected CD4+ T-cells, evaluated by flow cytometry. However, p24 levels evaluated by ELISA were not significantly reduced in culture supernatants. Moreover, calcitriol-treated iDCs exhibited decreased expression of genes involved in HIV-1 transfer compared to the control. Both, calcitriol-treated iDCs and LmDCs exhibit a similar gene expression profile, probably related to a transcriptional balance achieved after long treatment with calcitriol. Since calcitriol-differentiated DCs express on their surface a lower amount of DC-SIGN and SIGLEC-1 molecules, widely associated with HIV-1 transfer, suggesting that this mechanism contributes to a lower transfer of viral particles by the DCs
    corecore