66 research outputs found

    Can Preening Contribute to Influenza A Virus Infection in Wild Waterbirds?

    Get PDF
    Wild aquatic birds in the Orders Anseriformes and Charadriiformes are the main reservoir hosts perpetuating the genetic pool of all influenza A viruses, including pandemic viruses. High viral loads in feces of infected birds permit a fecal-oral route of transmission. Numerous studies have reported the isolation of avian influenza viruses (AIVs) from surface water at aquatic bird habitats. These isolations indicate aquatic environments have an important role in the transmission of AIV among wild aquatic birds. However, the progressive dilution of infectious feces in water could decrease the likelihood of virus/host interactions. To evaluate whether alternate mechanisms facilitate AIV transmission in aquatic bird populations, we investigated whether the preen oil gland secretions by which all aquatic birds make their feathers waterproof could support a natural mechanism that concentrates AIVs from water onto birds' bodies, thus, representing a possible source of infection by preening activity. We consistently detected both viral RNA and infectious AIVs on swabs of preened feathers of 345 wild mallards by using reverse transcription–polymerase chain reaction (RT-PCR) and virus-isolation (VI) assays. Additionally, in two laboratory experiments using a quantitative real-time (qR) RT-PCR assay, we demonstrated that feather samples (n = 5) and cotton swabs (n = 24) experimentally impregnated with preen oil, when soaked in AIV-contaminated waters, attracted and concentrated AIVs on their surfaces. The data presented herein provide information that expands our understanding of AIV ecology in the wild bird reservoir system

    Alexithymia in juvenile primary headache sufferers: a pilot study

    Get PDF
    Starting in the 1990s, there has been accumulating evidence of alexithymic characteristics in adult patients with primary headache. Little research has been conducted, however, on the relationship between alexithymia and primary headache in developmental age. In their research on alexithymia in the formative years, the authors identified one of the most promising prospects for research, as discussed here. The aim of this study was to verify whether there is: (a) a link between tension-type headache and alexithymia in childhood and early adolescence; and (b) a correlation between alexithymia in children/preadolescents and their mothers. This study was based on an experimental group of 32 patients (26 females and 6 males, aged from 8 to 15 years, mean 11.2 ± 2.0) suffering from tension-type headache and 32 control subjects (26 females and 6 males, aged from 8 to 15 years, mean 11.8 ± 1.6). Tension-type headache was diagnosed by applying the International Headache Classification (ICHD-II, 2004). The alexithymic construct was measured using an Italian version of the Alexithymia Questionnaire for Children in the case of the juvenile patients and the Toronto Alexithymia Scale (TAS-20) for their mothers. Higher rates of alexithymia were observed in the children/preadolescents in the experimental group (EG) than in the control group; in the EG there was no significant correlation between the alexithymia rates in the children/preadolescents and in their mothers

    A machine-learning parsimonious multivariable predictive model of mortality risk in patients with Covid-19

    Get PDF
    The COVID-19 pandemic is impressively challenging the healthcare system. Several prognostic models have been validated but few of them are implemented in daily practice. The objective of the study was to validate a machine-learning risk prediction model using easy-to-obtain parameters to help to identify patients with COVID-19 who are at higher risk of death. The training cohort included all patients admitted to Fondazione Policlinico Gemelli with COVID-19 from March 5, 2020, to November 5, 2020. Afterward, the model was tested on all patients admitted to the same hospital with COVID-19 from November 6, 2020, to February 5, 2021. The primary outcome was in-hospital case-fatality risk. The out-of-sample performance of the model was estimated from the training set in terms of Area under the Receiving Operator Curve (AUROC) and classification matrix statistics by averaging the results of fivefold cross validation repeated 3-times and comparing the results with those obtained on the test set. An explanation analysis of the model, based on the SHapley Additive exPlanations (SHAP), is also presented. To assess the subsequent time evolution, the change in paO2/FiO2 (P/F) at 48 h after the baseline measurement was plotted against its baseline value. Among the 921 patients included in the training cohort, 120 died (13%). Variables selected for the model were age, platelet count, SpO2, blood urea nitrogen (BUN), hemoglobin, C-reactive protein, neutrophil count, and sodium. The results of the fivefold cross-validation repeated 3-times gave AUROC of 0.87, and statistics of the classification matrix to the Youden index as follows: sensitivity 0.840, specificity 0.774, negative predictive value 0.971. Then, the model was tested on a new population (n = 1463) in which the case-fatality rate was 22.6%. The test model showed AUROC 0.818, sensitivity 0.813, specificity 0.650, negative predictive value 0.922. Considering the first quartile of the predicted risk score (low-risk score group), the case-fatality rate was 1.6%, 17.8% in the second and third quartile (high-risk score group) and 53.5% in the fourth quartile (very high-risk score group). The three risk score groups showed good discrimination for the P/F value at admission, and a positive correlation was found for the low-risk class to P/F at 48 h after admission (adjusted R-squared = 0.48). We developed a predictive model of death for people with SARS-CoV-2 infection by including only easy-to-obtain variables (abnormal blood count, BUN, C-reactive protein, sodium and lower SpO2). It demonstrated good accuracy and high power of discrimination. The simplicity of the model makes the risk prediction applicable for patients in the Emergency Department, or during hospitalization. Although it is reasonable to assume that the model is also applicable in not-hospitalized persons, only appropriate studies can assess the accuracy of the model also for persons at home

    The rapid spread of SARS-COV-2 Omicron variant in Italy reflected early through wastewater surveillance

    Get PDF
    The SARS-CoV-2 Omicron variant emerged in South Africa in November 2021, and has later been identified worldwide, raising serious concerns. A real-time RT-PCR assay was designed for the rapid screening of the Omicron variant, targeting characteristic mutations of the spike gene. The assay was used to test 737 sewage samples collected throughout Italy (19/21 Regions) between 11 November and 25 December 2021, with the aim of assessing the spread of the Omicron variant in the country. Positive samples were also tested with a real-time RT-PCR developed by the European Commission, Joint Research Centre (JRC), and through nested RT-PCR followed by Sanger sequencing. Overall, 115 samples tested positive for Omicron SARS-CoV-2 variant. The first occurrence was detected on 7 December, in Veneto, North Italy. Later on, the variant spread extremely fast in three weeks, with prevalence of positive wastewater samples rising from 1.0% (1/104 samples) in the week 5–11 December, to 17.5% (25/143 samples) in the week 12–18, to 65.9% (89/135 samples) in the week 19–25, in line with the increase in cases of infection with the Omicron variant observed during December in Italy. Similarly, the number of Regions/Autonomous Provinces in which the variant was detected increased from one in the first week, to 11 in the second, and to 17 in the last one. The presence of the Omicron variant was confirmed by the JRC real-time RT-PCR in 79.1% (91/115) of the positive samples, and by Sanger sequencing in 66% (64/97) of PCR amplicons. In conclusion, we designed an RT-qPCR assay capable to detect the Omicron variant, which can be successfully used for the purpose of wastewater-based epidemiology. We also described the history of the introduction and diffusion of the Omicron variant in the Italian population and territory, confirming the effectiveness of sewage monitoring as a powerful surveillance tool
    • 

    corecore