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The COVID-19 pandemic is impressively challenging the healthcare system. Several prognostic models 
have been validated but few of them are implemented in daily practice. The objective of the study 
was to validate a machine-learning risk prediction model using easy-to-obtain parameters to help 
to identify patients with COVID-19 who are at higher risk of death. The training cohort included all 
patients admitted to Fondazione Policlinico Gemelli with COVID-19 from March 5, 2020, to November 
5, 2020. Afterward, the model was tested on all patients admitted to the same hospital with COVID-19 
from November 6, 2020, to February 5, 2021. The primary outcome was in-hospital case-fatality risk. 
The out-of-sample performance of the model was estimated from the training set in terms of Area 
under the Receiving Operator Curve (AUROC) and classification matrix statistics by averaging the 
results of fivefold cross validation repeated 3-times and comparing the results with those obtained 
on the test set. An explanation analysis of the model, based on the SHapley Additive exPlanations 
(SHAP), is also presented. To assess the subsequent time evolution, the change in paO2/FiO2 (P/F) 
at 48 h after the baseline measurement was plotted against its baseline value. Among the 921 
patients included in the training cohort, 120 died (13%). Variables selected for the model were age, 
platelet count, SpO2, blood urea nitrogen (BUN), hemoglobin, C-reactive protein, neutrophil count, 
and sodium. The results of the fivefold cross-validation repeated 3-times gave AUROC of 0.87, and 
statistics of the classification matrix to the Youden index as follows: sensitivity 0.840, specificity 0.774, 
negative predictive value 0.971. Then, the model was tested on a new population (n = 1463) in which 
the case-fatality rate was 22.6%. The test model showed AUROC 0.818, sensitivity 0.813, specificity 
0.650, negative predictive value 0.922. Considering the first quartile of the predicted risk score 
(low-risk score group), the case-fatality rate was 1.6%, 17.8% in the second and third quartile (high-
risk score group) and 53.5% in the fourth quartile (very high-risk score group). The three risk score 
groups showed good discrimination for the P/F value at admission, and a positive correlation was 
found for the low-risk class to P/F at 48 h after admission (adjusted R-squared = 0.48). We developed 
a predictive model of death for people with SARS-CoV-2 infection by including only easy-to-obtain 
variables (abnormal blood count, BUN, C-reactive protein, sodium and lower SpO2). It demonstrated 
good accuracy and high power of discrimination. The simplicity of the model makes the risk prediction 
applicable for patients in the Emergency Department, or during hospitalization. Although it is 
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reasonable to assume that the model is also applicable in not-hospitalized persons, only appropriate 
studies can assess the accuracy of the model also for persons at home.

A rapid spread of SARS-CoV-2, the agent of coronavirus disease 2019 (COVID-19), has been observed first in 
China since early January 2020 and then in Italy since the last days of February 20201. At this time, the number 
of COVID-19 cases and related deaths continue to increase. Patients hospitalized with COVID-19 had a relevant 
rate of clinical deterioration. A first large study on more than 1000 patients with COVID-19 in China reported 
the need for transfer to an intensive care unit (ICU) in 5% of patients admitted with COVID-19, 2.3% mechani-
cal ventilation; 1.4% died2. Other studies have reported a rate around 5% of people admitted as critically ill3,4. 
Case fatality rate in persons with COVID-19 range from < 1 to 15%5,6. This implies a staggering challenge for the 
healthcare system. Unfortunately, treatment options are currently scarce, and as hospital resources are shrinking, 
systems to target respiratory support and other hospital resources to the highest-risk population, such as the 
ICU, is a priority. Several predictive models of adverse clinical outcomes in people with COVID-197–13 as well as 
a systematic review14 have been published. Having a clinical algorithm to predict patients who can benefit most 
from available resources is a valuable aid for decision making and capacity allocation. However, few models have 
tested the predictive value of simple and readily available parameters. The objective of this study was to generate 
and validate a machine-learning risk prediction model using parameters that are easily available to help identify 
patients with COVID-19 who are at higher risk of death.

Materials and methods
Study population.  The study cohort included all patients admitted to Fondazione Policlinico Gemelli with 
COVID-19 from March 5, 2020 to February 5, 2021. The diagnosis of SARS-CoV-2 infection was considered 
when the reverse transcription polymerase chain reaction (PCR) of the SARS-CoV-2 assay was detected from 
nasopharyngeal swab. For each patient, time 0 was considered the date of hospitalization for SARS-CoV-2 infec-
tion.

Data collection.  Patient data included demographics, comorbidities, vital signs, and laboratory char-
acteristics, as well as exposure history, medical history, symptoms at onset, treatment, and outcome data on 
admission and during hospitalization. Pre-existing conditions collected were diabetes, hypertension, chronic 
heart disease, chronic respiratory disease, chronic kidney disease, mild to severe liver disease, pancreatitis, neu-
rological impairment, connective tissue disease, transplantation, HIV infection, and malignancy. Vital signs 
included heart rate, respiratory rate, oxygen saturation by pulse oximetry (SpO2), temperature, body weight, 
and body mass index (BMI). Laboratory parameters included hematologic variables (white blood cells [WBC], 
neutrophils, lymphocytes, and eosinophils, platelet count, hematocrit), blood urea nitrogen (BUN); creatinine; 
total bilirubin; creatine kinase; glucose; sodium; potassium; C-reactive protein; procalcitonine, D-dimer; fer-
ritin; lactate dehydrogenase (LDH); arterial blood oxygen partial pressure (paO2) and inspired oxygen fraction 
(FiO2), paO2/FiO2 ratio (P/F). SpO2 was grouped into three categories according to the interquartile range: 
SpO2 less than 94% (first quartile), SpO2 between 94 and 97.0% (second and third quartile), SpO2 greater than 
97.0% (fourth quartile). All data were extracted from the electronic medical records of all patients. To obtain 
structural information from unstructured texts (such as clinical diary, radiology reports etc.), Natural Language 
Processing (NLP) algorithms were applied, based on text mining procedures such as: sentence/word tokeniza-
tion; rule-based approach supported by annotations defined by the clinical SMEs, and using semantic/syntactic 
corrections where necessary.

Outcome.  The primary outcome was in-hospital case-fatality rate.

Predictors.  Candidate predictors were included when previously shown to be related to mortality in 
COVID-19 patients or other respiratory diseases (such as bacterial pneumonia) or possibly related because of 
clinical plausibility.

Statistical analysis.  To capture the risk of death associated with early hospitalization, we developed a pre-
dictive model including only laboratory variables and oxygen saturation at the time of SARS-Cov2 infection. 
The rationale behind this choice was to provide a tool for early risk assessment. The variables for the model are 
routinely collected, available within a very short time after presentation, and the literature has reported their 
association with an increased likelihood of death; moreover, they could also be available at home through home 
services. In this way, an estimate of risk can be obtained at the time of hospital admission, and actions on the 
management of critical versus non-critical patients can be readily taken by hospital staff from the patient’s initial 
clinical status as well as its evolution in a relatively short time frame. A binary logistic regression was applied to 
express the risk of death in analytical terms, and possibly use it in risk assessment tools based on model coeffi-
cients alone. We have chosen to use a logistic regression model because it has both a simple analytical expression 
and a straightforward interpretation in terms of regression coefficients; other machine learning techniques can 
have in general higher or slightly higher performances, but at the cost of less technical transferability and clinical 
explainability, at least in our setting.

Candidate predictors were selected through a combination of prior domain knowledge and a data-driven 
approach: for example, cut-off values to classify SpO2 and sodium were heuristically defined by the interquartile 
range, confirmed by a-priori medical knowledge. Overall feature selection was conducted iteratively based on 
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their added contribution to the model in terms of information criterion to minimize model redundancy. The 
model was trained on the first 8 months of data (March 5, 2020–November 5, 2020), and tested on the next 
3 months of data (November 6, 2020–February 5 2021). The out-of-sample performance of the model was 
estimated from the training set in terms of area under the receiving operator curve (AUROC) and classification 
matrix statistics by averaging the results of the fivefold cross validation repeated 3-times and comparing the 
results with those obtained on the test set. Finally, an analysis of lift and gain graphs is presented to identify seg-
ments of outcome probability where the model proves particularly useful compared to having no model at all. A 
model explanation analysis, based on the SHapley Additive exPlanations (SHAP) framework, is also presented 
to derive information about the contribution of individual variables to the model beyond that obtained from 
simple logistic regression coefficients.

Baseline laboratory variables for each patient were included by taking the first value after the date-time of 
hospital admission; only variables with less than 5% of missing values were retained for further analysis, and the 
final training cohort was selected by choosing the complete records only. This set of variables, along with age 
and sex, and study outcome, were given as input to a routine of 100-iteration of AIC-based stepwise selection 
on 80% subsets of the randomly partitioned training data, and characteristics selected at least 50 times were 
considered to train the final logistic regression model. A level of 0.05 was considered significant for statistical 
testing. Statistical analysis was done with R version 3.6. Data were stored in SAS Viya V.03.05 and accessed 
through R with SWAT library version 1.5.0.

According to TRIPOD guidelines15, the study should be considered a TRIPOD 2b because it involves a 
chronological division between training and testing data from a single institution.

Ethical approval.  This study was approved by Ethics Committees of the Fondazione Policlinico Gemelli 
(IRB 3447). All research was performed in accordance with relevant guidelines/regulations and it was conducted 
in accordance to the Declaration of Helsinki. Written informed consent was waived because of the rapid emer-
gence of this infectious disease (Comitato Etico Policlinico Gemelli; comitato.etico@policlinicogemelli.it).

Results
The eligible training cohort included a total of 1126 patients with confirmed COVID-19 admitted from 5 March, 
2020, to 5 November, 2020. In this cohort, the in-hospital mortality rate was 13.0%. Characteristics of the study 
population are shown in Table 1.

Survivors differed from nonsurvivors for being younger, having few preexisting medical conditions (specifi-
cally, lower rates of diabetes, hypertension, cardiovascular diseases, chronic respiratory diseases, renal failure, 
solid tumors, and arteriopathy), more cough and diarrhea at onset but less dyspnea, a longer time from symptoms 
onset to hospitalization, a higher P/F, albumin and hemoglobin value, a higher platelet count, lower WBC and 
lymphocyte count, a lower creatinine, BUN, C-reactive protein, and D-dimer.

From an initial dataset of 1126 patient records, a total of 921 complete records were included. After the feature 
selection phase, the selected variables were age (relative selection frequency [RSF] 100%), platelet count (RSF 
97%), SpO2 (RSF 80%), BUN (RSF 72%), hemoglobin (RSF 71%), C-reactive protein (RSF 68%), neutrophil count 
(RSF 60%), and sodium (RSF 58%). These variables were used to fit the logistic regression model. The estimated 
coefficients of the logistic model are shown in Table 2, along with p values. Each variable in the model is associ-
ated with a distribution of importance values among all instances of the dataset (patients), ordered by the value 
of the variable from low to high. It emerges, for example, that a lower value of platelet count is associated with a 
higher risk of death, whereas higher values of BUN, C-reactive protein, neutrophils and age are associated with 
a higher risk of death. The sodium variable was subdivided according to the interquartile range: in this three-
category version of the variable (low, normal, high), it can be seen that the “low sodium” group (≤ 136 mmol/l) 
does not impact death for this cohort of patients, whereas the ”high sodium” class (≥ 141 mmol/l) does. Simi-
larly, SpO2 < 94% has a greater impact in the model than the variable representing SpO2 values between 94 and 
97. Figure 1 is a representation of the importance of the variables in the model based on the SHAP framework.

The overall statistical significance of the model according to chi-squared residual deviance test was confirmed 
with a p-value zero. The fivefold cross-validation repeated 3-times resulted in an AUROC of 0.87, and the sta-
tistics of the classification matrix at the Youden index as follows: sensitivity 0.840, specificity 0.774, negative 
predictive value 0.971. The model was then tested on the cohort of patients admitted between November 6, 2020, 
and February 5, 2021, (n = 1463), recording the model variable of interest and the clinical outcome. In this cohort 
of patients, the mortality rate was 22.6%. The model test results in terms of AUROC statistics and confounding 
matrix are AUROC 0.818, sensitivity 0.813, specificity 0.650, negative predictive value 0.922 (Table 3; Fig. 2). 
To get a quantification of how the model performs in different segments of probability outputs compared to a 
random classifier, a gain and lift curve analysis is shown (Fig. 3). Moreover, the lift plot on the testing data in 
Fig. 3 shows that for the first decile of predictions, the model performs more than 3 times better than random 
guessing based on prevalence only. Specifically, when considering the first quartile of the predicted risk score on 
the test set, it contains 6 death events out of 366 total predictions in that risk group. Similarly, the highest 25% of 
risk scores on the test set contain 196 actual death events, which is more than 50% of the population classified in 
that risk group (Table 4). A calibration analysis was performed on the testing set to produce the calibration plot 
of Suppl. Fig. Y. A linear regression fit on the calibration points sampled at every 5 percentiles of the predicted 
outcome probabilities estimated an intercept of − 4.57 ± 2.12 and a slope of 1.12 ± 0.03 for the regression line 
with an adjusted R-squared of 0.89. Brier score on the testing set predictions was 0.12.

A decision curve analysis was conducted on the testing set to assess model utility compared to baseline strate-
gies of considering “no high-risk” or “all high risk”. Suppl. Fig. W shows the decision curve for thresholds in the 
range 0–0.5: the curve associated to the model is always higher or substantially higher than the baseline strategies. 
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Table 1.   Characteristics of patients included in the training and testing subsets. SD standard deviation, IQR 
interquartile range, BMI body mass index, P/F paO2/FiO2 ratio.

Characteristics

Training Test

All patients  (N = 921) Alive (n = 801) Died (n = 120) All patients  (N = 1463) Alive (n = 1131) Died (n = 332)

Demographics

Age, median (SD) 68.0 (15.9) 64.0 (15.4) 84.0 (10.1) 70.0 (18.2) 65.0 (18.5) 80.0 (11.3)

Male 566 (61.4%) 501 (62.5%) 65 (54.2%) 798 (54.5%) 596 (52.7%) 202 (60.8%)

BMI, median (IQR) 26.0 (24.2; 29.1) 26.1 (24.2; 28.7) 26.0 (23.5; 29.3) 26.1 (24.2; 28.2) 26.1 (24.2; 28.2) 26.1 (23.9; 28.1)

Coexisting conditions

Any 685 (74.4%) 574 (71.7%) 111 (92.5%) 1127 (77.0%) 827 (73.1%) 300 (90.4%)

Current or former smoker 24 (2.6%) 23 (2.9%) 1 (0.8%) 23 (1.6%) 20 (1.8%) 3 (0.9%) 

Arteriopathy 8 (0.9%) 4 (0.5%) 4 (3.3%) 13 (0.9%) 5 (0.4%) 8 (2.4%) 

Chronic liver disease 11 (1.2%) 10 (1.2%) 1 (0.8%) 14 (1.0%) 9 (0.8%) 5 (1.5%)

Cirrhosis 6 (0.7%) 3 (0.4%) 3 (2.5%) 12 (0.8%) 8 (0.7%) 4 (1.2%) 

Diabetes 149 (16.2%) 120 (15.0%) 29 (24.2%) 279 (19.1%) 206 (18.2%) 73 (22.0%) 

Dyslipidemia 78 (8.5%) 70 (8.7%) 8 (6.7%) 106 (7.2%) 80 (7.1%) 26 (7.8%) 

Hiv 27 (2.9%) 26 (3.2%) 1 (0.8%) 22 (1.5%) 18 (1.6%) 4 (1.2%) 

Myocardial infarction 116 (12.6%) 87 (10.9%) 29 (24.2%) 227 (15.5%) 148 (13.1%) 79 (23.8%) 

Kidney failure 44 (4.8%) 32 (4.0%) 12 (10.0%) 107 (7.3%) 53 (4.7%) 54 (16.3%) 

Hypertension 374 (40.6%) 315 (39.3%) 59 (49.2%) 636 (43.5%) 480 (42.4%) 156 (47.0%) 

Autoimmune disease 41 (4.5%) 38 (4.7%) 3 (2.5%) 62 (4.2%) 48 (4.2%) 14 (4.2%) 

Hematologic neoplasm 6 (0.7%) 4 (0.5%) 2 (1.7%) 29 (2.0%) 16 (1.4%) 13 (3.9%) 

Neurologic impairment 102 (11.1%) 59 (7.4%) 43 (35.8%) 171 (11.7%) 101 (8.9%) 70 (21.1%)

Pancreatitis 5 (0.5%) 5 (0.6%) 0 (0.0%) 13 (0.9%) 8 (0.7%) 5 (1.5%) 

Cardiovascular pathology 155 (16.8%) 118 (14.7%) 37 (30.8%) 295 (20.2%) 182 (16.1%) 113 (34.0%) 

Lung pathology 108 (11.7%) 81 (10.1%) 27 (22.5%) 162 (11.1%) 97 (8.6%) 65 (19.6%) 

Radiotherapy 15 (1.6%) 13 (1.6%) 2 (1.7%) 43 (2.9%) 28 (2.5%) 15 (4.5%) 

Heart failure 44 (4.8%) 27 (3.4%) 17 (14.2%) 84 (5.7%) 39 (3.4%) 45 (13.6%) 

Transplantation 6 (0.7%) 5 (0.6%) 1 (0.8%) 22 (1.5%) 13 (1.1%) 9 (2.7%) 

Tumor 236 (25.6%) 188 (23.5%) 48 (40.0%) 544 (37.2%) 406 (35.9%) 138 (41.6%) 

Hepatic ulcer 15 (1.6%) 11 (1.4%) 4 (3.3%) 30 (2.1%) 16 (1.4%) 14 (4.2%) 

Symptoms at admission

Any 807 (87.6%) 706 (88.1%) 101 (84.2%) 1162 (79.4%) 887 (78.4%) 275 (82.8%)

Cough 344 (37.4%) 327 (40.8%) 17 (14.2%) 366 (25.0%) 309 (27.3%) 57 (17.2%)

Dyspnea 503 (54.6%) 429 (53.6%) 74 (61.7%) 755 (51.6%) 542 (47.9%) 213 (64.2%)

Fever 712 (77.3%) 632 (78.9%) 80 (66.7%) 949 (64.9%) 744 (65.8%) 205 (61.7%)

Nausea or vomiting 47 (5.1%) 43 (5.4%) 4 (3.3%) 65 (4.4%) 53 (4.7%) 12 (3.6%)

Diarrhea 99 (10.7%) 97 (12.1%) 2 (1.7%) 93 (6.4%) 80 (7.1%) 13 (3.9%)

Time from symptom onset 
to admission, median 
(IQR)

7 (3; 10) 7 (3; 10) 3 (2; 7) 7 (3; 10) 7 (3; 11) 5 (2; 9.5)

Vital signs on the day of admission, median (IQR)

Temperature, °C 37.0 (36.0; 38.3) 37.1 (36.0; 38.4) 36.8 (36.0; 37.9) 36.5 (36.0; 37.9) 36.8 (36; 37.6) 36.3 (36.0; 37.9)

Systolic blood pressure, 
mmHg 130.0 (118.0; 143.0) 130 (120; 142) 122 (108; 140) 130.0 (118.0; 145.0) 131.0 (120.0; 145.0) 123.5 (110.0; 145.0)

Heart rate, /min 80.0 (71.0; 88.0) 78.0 (70.0; 88.0) 83.0 (72.0; 90.0) 80.0 (73.0; 90.0) 80.0 (74.0; 90.0) 80.0 (72.0; 90.0)

Laboratory findings on the day of admission, median (IQR)

White blood cell count, /μl 7.0 (5.1; 9.5) 6.9 (5.0; 9.3) 8.1 (5.3; 10.5) 8.1 (5.9; 11.5) 7.9 (6.0; 11.5) 8.5 (5.6; 11.5)

Lymphocyte count, /μl 1.1 (0.8; 1.5) 1.1 (0.8; 1.5) 1.1 (0.7; 1.5) 1.0 (0.7; 1.5) 1.1 (0.8; 1.5) 0.9 (0.6; 1.3)

Hemoglobin level, g/dl 14.3 (13.1; 15.3) 14.5 (13.4; 15.3) 12.9 (11.6; 14.4) 14.1 (12.5; 15.2) 14.3 (12.9; 15.3) 13.3 (11.2; 14.6)

Platelets, μl 198.0 (158.0; 257.0) 202.0 (160.0; 263.0) 176.0 (143.0; 214.0) 204.0 (154.0; 273.0) 207.0 (162.0; 278.0) 196.5 (140.0; 253.5)

Creatinine level, mg/dl 0.9 (0.8; 1.1) 0.9 (0.8; 1.1) 1.1 (0.9;  1.6) 1.0 (0.8; 1.4) 0.9 (0.8; 1.2) 1.3 (0.9;  2.0)

d-Dimer level, ng/ml 740.5 (400.0; 1396.0) 695.0 (380.0; 1314.0) 1158.0 (863.0; 2872.0) 853.0 (468.0; 2031.0) 718.0 (396.0; 1488.0) 1715.5 (811.5; 3667.0)

C-reactive protein level, 
mg/l 60.4 (23.5; 130.0) 58.0 (22.1; 130.0) 80.4 (38.7; 129.9) 77.4 (32.6; 143.1) 66.4 (25.5; 132.7) 99.9 (61.7; 164.3)

Urea nitrogen, mg/dl 18.0 (15.0; 24.0) 17.0 (14.0; 22.0) 27.0 (20.0; 38.0) 22.0 (17.0; 32.0) 20.0 (16.0; 27.0) 34.0 (23.0; 50.0)

Albumin, g/l 33.0 (30.0; 37.0) 33.0 (30.0; 37.0) 31.0 (26.0; 35.0) 31.0 (28.0; 35.0) 33.0 (29.0; 36.0) 29.0 (26.0; 32.0)

Vitamin D, ng/ml 15.7 (10.7; 20.1) 15.8 (10.7; 20.1) 12.8 (12.8; 12.8) 16.4 (13.2; 28.4) 19.3 (13.2; 28.4) 15.6 (14.3; 22.8)

P/F 290.5 (201.4; 361.9) 297.4 (208.2; 366.7) 248.3 (164.5; 351.7) 228.8 (159.5; 323.0) 249.8 (182.0; 332.8) 166.4 (104.0; 250.0)
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Also, a zoomed-in version of the graph was produced in Suppl. Fig. Z to highlight the first risk threshold we 
identified (0.02) for the risk classes.

Evolution of respiratory condition by initial risk group.  In addition to having an instrument capable 
of distinguish between low-risk, high-risk and very high-risk cases with a fair degree of accuracy, we evaluated 
the evolution of the different groups of patients in the first few hours after hospital admission. Considering the 
cohort of patients used for model training and taking the first available value of P/F within 24 h of hospital 
admission, the three model-defined risk groups had a mean value of P/F of 301, 273, 273 for low-risk, high-risk 
and very high-risk, respectively. A t test between the low-risk group versus the other two categories showed a 
statistically significant difference. To assess the subsequent time course, the change in P/F at 48 h after the base-

Table 2.   Logistic regression model at the start of hospitalization for SARS-CoV-2 infection.

Variables Coefficient P value

Intercept − 8.022163 3.34e−09****

Age (continuous) 0.090299 9.32e-15****

Hemoglobin (continous) − 0.124580 0.03666*

Blood urea nitrogen (continuous) 0.016342 0.00956**

Platelet count (continuous) − 0.004924 0.00057***

C-reactive protein (continuous) 0.003086 0.04838*

Neutrophils (continuous) 0.092127 0.00203**

Sodium ≤ 136 mmol/l 0.015663 0.95494

Sodium ≥ 141 mmol/l 0.720771 0.01388*

SpO2 94.4–97.0% 0.501530 0.15757

SpO2 ≤ 94.3% 1.060584 0.00521**

Figure 1.   SHAP (SHapley additive exPlanations) framework for the features in the logistic model.

Table 3.   Classification matrix and statistics at training set Youden classification threshold on training (cross-
validation) and test data. AUROC area under the receiver operating characteristics, PPV positive predictive 
value, NPV negative predictive value, TN true negative, FN false negative, TP true positive, FP false positive.

Dataset AUROC Sensitivity Specificity PPV NPV TN FN TP FP

Training set (cross validation) 0.870 0.840 0.766 0.341 0.971 639 19 100 193

Testing set 0.818 0.813 0.650 0.405 0.922 734 62 270 397
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line measurement can be plotted against its baseline value (Fig. 4). In the low-risk group, the P/F following the 
admission to hospital did not worsen over the following 48 h (adjusted R squared of 0.48). In the very high-risk 
group the P/F tends to a single value independently from the baseline value (adjusted R squared of 0).

Adoption in clinical practice.  The risk of death score for each patient with SARS-CoV-2 infection was 
made available to clinicians along with real-time predictions directly on the Electronic Health Record (Fig. 5).

Figure 2.   Receiver operator characteristics (ROC) on training set (left) and testing set (right).

Figure 3.   Cumulative gain and lift charts on testing data.

Table 4.   Risk groups as defined from gains and lift chart analysis on the test data by applying the thresholds 
defined on the trained data.

Risk group Number of patients Lower threshold Higher threshold Death prevalence (%)

Mild risk (< 25th percentile) 366 0.000 0.019 1.6

High risk (25–75th percentile) 731 0.019 0.270 17.8

Very high risk (> 75th percentile) 366 0.270 1.000 53.5
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Discussion
Given the high rate of patients with complications of SARS-CoV-2 infection, prioritization of patients who 
need higher levels of care or immediate medical attention is critical. In the present study on a total of 2384 
patients hospitalized with COVID-19, of whom 18.9% died, we presented an artificial intelligence-driven clinical 
algorithm to predict risk of death. The algorithm showed that abnormal blood counts (hemoglobin, platelets, 
neutrophils), high levels of BUN, C-reactive protein, sodium and lower SpO2 were associated with an increased 
risk of death. From the model, we were able to identify three risk level groups: low-risk, with a prevalence of 

Figure 4.   Scatter plot of baseline P/F value and its variation at 48 h for the three groups of risk class patients 
according to the logistic regression model. The line of best linear fit is reported for ease of visualization.

Figure 5.   Example of the availability on HER of the risk score of death at admission for a patient with SARS-
CoV-2 infection.
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death of 1.6%, high-risk, with a prevalence of death of 17.8%, and very high-risk with a prevalence of death of 
53.5%. Our model includes only easy-to-obtain variables: its simplicity makes the risk prediction applicable for 
different purposes for patients in the Emergency Department, or during the hospitalization. For example, when 
the calculated individual risk of death is low, the physician may choose to monitor the patient and send him/her 
back home, whereas high risk estimates suggest more aggressive monitoring or resource allocation or may be 
useful in anticipating organizational needs in terms of intensive, sub-intensive, and rehabilitation rooms and staff 
allocation. Safely discharging patients from the Emergency Department is of a great benefit in saving beds for 
other critically ill patients. Such a parsimonious model is exploitable even in medically resource-limited settings.

The discriminatory performance of the model is very high and testing of the model on a new cohort of the 
very newly diagnosed patients confirmed its validation. The model also demonstrated good accuracy in predict-
ing respiratory evolution when P/F at baseline and at 48 h were considered.

The two major strengths of the present study are the parsimonious inclusion of simple and easy-to-obtain 
variables, also available in primary care settings, and the immediate translation of a mathematical model into a 
comprehensible and implementable number in EHR for clinical decision making in daily practice.

Several published studies provide a computational tool or Web-based calculator for easy use in a variety of 
settings10,11,16–20. Unfortunately, such calculators require data entry that is cumbersome in a busy clinical prac-
tice. Real-time processing of the model directly from the EHR provides an immediate and seamless calculation, 
a score that can be used to support clinical decision making and support prioritization, especially when the 
healthcare system is overloaded.

Other predictive models have been published previously, many of which report age, hematologic meas-
ures, C-reactive protein and spO2 as the main variables explaining the predictive model7,8. Most of the pub-
lished studies focused on very critically ill people21. Our results confirm and extend those of other large cohort 
studies7–13 demonstrating the predictive value of renal function20,22,23 and, particularly, of blood urea nitrogen 
for mortality14,24,25. In addition, we share 4 of 9 variables from a machine-learning-based study with the largest 
included population14. Many models make particular use of easy-to-collect variables26,27.

The model of the present study shares some variables among those included in CURB-65, a well-validated and 
widely used score for predicting mortality in persons with community-acquired pneumonia28, with an AUROC 
of 0.72 (0.71–0.73) in patients with COVID-1914. Age and BUN are included in both CURB-65 and our predic-
tive model. whereas respiratory function was described by respiratory rate in CURB-65 and SpO2 in our model. 
The variables in the present model also share many parameters with other risk scores used to predict mortality in 
patients with sepsis, such as the widely used SOFA score29, probably reflecting a clinical presentation of COVID-
19 very close to sepsis. These findings may help highlight the complex pathogenesis of the SARS-CoV-2 infection.

To date, published models implementing machine learning techniques for statistical analysis used very differ-
ent techniques (support vector machine27, artificial neural networks, decision trees, partial least squares discri-
minant analysis, K nearest neighbour algorithm22,30,31, ensemble, Gaussian process, linear, Naïve Bayes22, random 
forest, catboost, and extreme gradient boosting31) indicating good ability to predict mortality. In our study, we 
proposed a simple classifier model based on logistic regression which can be easily exported on different soft-
ware environments and has a neat clinical explainability in terms of regression coefficients, while still maintain 
a satisfying out-of-sample performance. In addition, we enhanced even more the model readability by using the 
Shapley additive explanations (SHAP) framework to make the individual variables contribution to the overall 
prediction available and understandable in real-time to physicians along with the model’s risk score. Machine 
learning methods can synthesize data from thousands of patients to generate tailored predictions for each new 
patient in real time. In addition, model explanations used in our study such as Shapley additive explanations 
(SHAP)25,27 were made available and understandable to physicians along with real-time predictions.

The present study includes several limitations: the scalability and the interoperability of the entire data archi-
tecture must be demonstrated in other centers and clinical settings. Moreover, the impact of clinical implementa-
tion of this predictive model in daily clinical life has not yet been demonstrated. Studies demonstrating changes 
in clinical management based on model prediction are strongly warranted.

The two greatest strengths of the present study are the parsimonious inclusion of simple and easy-to-obtain 
variables, also available in primary care settings, and the immediate translation of a mathematical model into a 
comprehensible and implementable number in EHR for clinical decision-making in daily practice. Indeed, for 
each patient who tested positive to PCR for SARS-CoV2, hospital IT made available to us in near real-time the 
patient’s data in a pseudo-anonimyzed manner on a dedicated environment. We were able to access this data 
and send back to the server the model risk score, the risk class, and the importance of the variables for each 
particular prediction. This output information was entered into the EMR software interface of the emergency 
and infectious disease, through an automated procedure, for on-line consultation in the wards.

Currently, containing the COVID-19 epidemic is an urgent global priority. Dealing with a severe pandemic 
disease such as COVID-19 is also very challenging because rapidly changing variables (vaccination, new SARS-
CoV-2 variants, saturation of hospital capacity) alter the risk of death over time32. Our predictive model is prag-
matic and effective in identifying individuals at particularly high risk for a poorer hospital course. Computational 
infrastructure could enhance this process, and data repository, updated in real time, can continuously inform the 
planning of diagnostic and treatment strategies. Future randomised trials should be conducted to demonstrate 
whether the current use of the death risk score will improve final patient outcomes. Predictive models can help 
provide appropriate care and optimize the use of limited resources, such as during a pandemic.

Finally, sharing large amounts of data among centers around the world can be a formidable response to the 
tremendous challenge of the COVID-19 pandemic.
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