9 research outputs found

    Barrier functions and paracellular integrity in human cell culture models of the proximal respiratory unit.

    Get PDF
    International audienceAirway epithelial cells provide a barrier to the translocation of inhaled materials. Tight (TJ) and adherens junctions (AJ) play a key role in maintaining barrier functions, and are responsible for the selective transport of various substances through the paracellular pathway. In this study we compared a bronchial cell line (16HBE14o-) and primary bronchial cells (HBEC), both cocultivated with the fibroblast cell line Wi-38, with respect to their structural differentiation and their reaction to cytokine stimulation. HBEC formed a pseudostratified epithelial layer and expressed TJ and AJ proteins after 2 weeks in coculture. Mucus-producing and ciliated cells were found within 24 days. Additionally, a beating activity of the ciliated HBEC (14-19 Hz) could be detected. 16HBE14o-in coculture showed a multilayered growth without differentiation to a pseudostratified airway epithelium. Simultaneous exposure to TNF-a-and IFN-c-induced significant changes in barrier function and paracellular permeability in the cocultures of HBEC/Wi-38 but not in the 16HBE14o-/Wi-38. In summary, HBEC in coculture mimic the structure of native polarized bronchial epithelium showing basal, mucus-producing and ciliated cells. Our system provides an opportunity to examine the factors that influence barrier and mucociliary function of bronchial epithelium within a time frame of 3 weeks up to 3 months in an in vivo-like differentiated model

    Etablierung einer Ko-Kultur von Alveolarepithel und mikrovaskulärem Endothel als in-vitro-Modell einer humanen respiratorischen Einheit

    No full text
    Ziel der Promotionsarbeit war die Etablierung einer humanen respiratorischen Einheit in vitro zur Untersuchung von Wirkmechanismen einer akuten Lungenschädigung. Als Ko-Kulturmodell wurde eine Kultur humaner Alveoloarepithelzellen vom Typ II (A549, NCI H441, primäre hATII Zellen) mit mikrovaskulären Endothelzellen (ISO-HAS-1, primäre HPMEC) auf den beiden Seiten einer mikroporösen Filtermembran (Bilayer) gewählt. Ein differenzierter Monolayer von NCI H441 konnte in Bilayer-Ko-Kultur mit ISO-HAS-1 oder HPMEC durch die Zugabe von Dexamethason (1 µM) unter Verwendung eines serumhaltigen Mediums induziert werden. Dabei wurde eine von Tag 10 bis Tag 12 phänotypisch stabile Ko-Kultur mit TER-Werten um 500 Ohm x cm2 erhalten. Im Hinblick auf die Freisetzung von IL-8 und MCP-1 und die fehlende Freisetzung von RANTES nach Stimulation waren NCI H441 den hATII Zellen ähnlicher als die häufig als hATII-analog eingesetzte Zell-Linie A549, die RANTES freisetzte. Außerdem bildeten A549 trotz zahlreicher VariationeThe aim of the doctoral thesis was to establish a human respiratory unit to investigate mechanisms of acute lung injury. Co-cultures of human alveolar epithelial type II cells (A549, NCI 441 cells, primary hATII cells) and microvascular endothelial cells (ISO-HAS-1 cells, primary HPMECs) on opposing surfaces of a microporous filter membrane (bilayer) constituted the pulmonary model system. In the presence of medium with serum and dexamethasone (1µM/ml) a well-developed monolayer of NCI H441 was formed in co-culture with ISO-HAS-1 cells and HPMECs, respectively. This enabled a phenotypically stable co-culture with average TER-values of 500 Ohm*cm2 to be maintained from day 10 to 12 of co-cultivation. With regard to the stimulation-induced release of IL-8 and MCP-1 and the lacking expression of RANTES, NCI H441 cells showed properties more similar to hATII than the RANTES-producing cell-line A549, which is often used as a type II analogue. Despite numerous variations of the culture conditions the A549 cells we

    The role of the intestinal microvasculature in inflammatory bowel disease: studies with a modified Caco-2 model including endothelial cells resembling the intestinal barrier in vitro

    Get PDF
    The microvascular endothelium of the gut barrier plays a crucial role during inflammation in inflammatory bowel disease. We have modified a commonly used intestinal cell model based on the Caco-2 cells by adding microvascular endothelial cells (ISO-HAS-1). Transwell filters were used with intestinal barrier-forming Caco-2 cells on top and the ISO-HAS-1 on the bottom of the filter. The goal was to determine whether this coculture mimics the in vivo situation more closely, and whether the model is suitable to evaluate interactions of, for example, prospective nanosized drug vehicles or contrast agents with this coculture in a physiological and inflamed state as it would occur in inflammatory bowel disease. We monitored the inflammatory responsiveness of the cells (release of IL-8, soluble intercellular adhesion molecule 1, and soluble E-selectin) after exposure to inflammatory stimuli (lipopolysaccharide, TNF-α, INF-γ, IL1-β) and a nanoparticle (Ba/Gd: coprecipitated BaSO4 and Gd(OH)3), generally used as contrast agents. The barrier integrity of the coculture was evaluated via the determination of transepithelial electrical resistance and the apparent permeability coefficient (Papp) of NaFITC. The behavior of the coculture Caco-1/ISO-HAS-1 was compared to the respective monocultures Caco-2 and ISO-HAS-1. Based on transepithelial electrical resistance, the epithelial barrier integrity of the coculture remained stable during incubation with all stimuli, whereas the Papp decreased after exposure to the cytokine mixture (TNF-α, INF-γ, IL1-β, and Ba/Gd). Both the endothelial and epithelial monocultures showed a high inflammatory response in both the upper and lower transwell-compartments. However, in the coculture, inflammatory mediators were only detected on the epithelial side and not on the endothelial side. Thus in the coculture, based on the Papp, the epithelial barrier appears to prevent a potential inflammatory overreaction in the underlying endothelial cells. In summary, this coculture model exhibits in vivo-like features, which cannot be observed in conventional monocultures, making the former more suitable to study interactions with external stimuli

    FVIII production by human lung microvascular endothelial cells

    Get PDF
    While extrahepatic factor VIII (FVIII) synthesis suffices for hemostasis, the extrahepatic production sites are not well defined. We therefore investigated the ability of the human lungs to produce FVIII. Lungs from heart-beating donors who were declined for transplantation were perfused and ventilated in an isolated reperfusion model for 2 hours. A progressive accumulation of FVIII and von Willebrand factor (VWF) was recorded in the perfusion medium in 3 of 4 experiments. By contrast, factor V, fibrinogen, and immunoglobulin G (IgG) levels remained constant during the perfusion period, indicating that the accumulation of FVIII and VWF was not due to diffusion from the intercellular medium into the vascular system. Purified human lung microvascular endothelial cells produced FVIII during at least 2 passages in vitro. Altogether, these data identify the lung endothelial cells as a FVIII production site in humans.status: publishe

    The Development of Novel Approaches to the Identification of Chemical and Protein Respiratory Allergens

    No full text
    In October 2006 the European Centre for the Validation of Alternative Methods (ECVAM) sponsored and hosted a 3 day Workshop to consider opportunities and challenges in the development of alternative methods for the identification and characterisation of chemical respiratory allergens. The proceedings, conclusions and recommendations of that Workshop were subsequently made available as an ECVAM Workshop Report, and were published as review paper. In April 2008 a second meeting was convened by ECVAM to consider what progress has been made against the recommendations deriving from the 2006 Workshop and publication of the report. This meeting had as a second objective consideration of whether new opportunities have emerged since 2006 for the identification and characterisation of chemical respiratory allergens. In addition, the scope of the meeting was broadened to include also an examination of new and emerging approaches that may be appropriate for the evaluation of the respiratory sensitising potential of proteins.JRC.I.2-Chemical assessment and testin

    An impaired alveolar-capillary barrier in vitro: effect of proinflammatory cytokines and consequences on nanocarrier interaction

    Get PDF
    The alveolar region of the lung is an important target for drug and gene delivery approaches. Treatment with drugs is often necessary under pathophysiological conditions, in which there is acute inflammation of the target organ. Therefore, in vitro models of the alveolar-capillary barrier, which mimic inflammatory conditions in the alveolar region, would be useful to analyse and predict effects of novel drugs on healthy or inflamed tissues. The epithelial cell line H441 was cultivated with primary isolated human pulmonary microvascular endothelial cells (HPMECs) or the endothelial cell line ISO-HAS-1 on opposite sides of a permeable filter support under physiological and inflammatory conditions. Both epithelial and endothelial cell types grew as polarized monolayers in bilayer coculture and were analysed in the presence and absence of the proinflammatory stimuli tumour necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ). In addition, the nanocarrier polyethyleneimine (PEI) was chosen as a model compound to study cell uptake (Oregon Green (OG)-labelled PEI) and gene transfer (PEI–pDNA complex). Upon treatment with TNF-α and IFN-γ, both cocultures exhibited comparable effects on the trans-bilayer electrical resistance, the transport of sodium fluorescein and the increase in secondary cytokine release. Basolateral (endothelial side) exposure to TNF-α or simultaneous exposure to TNF-α and IFN-γ generated an alveolar-capillary barrier with inflammation-like characteristics, impaired barrier function and a local disruption of the continuous apical labelling of the tight junction plaque protein zonula occludens-1 (ZO-1). Although transfection rates of 8 per cent were obtained for H441 cells in non-polarized monocultures, apical–basolateral-differentiated (polarized) H441 in coculture could not be transfected. After basolateral cytokine exposure, uptake of fluorescently labelled PEI in polarized H441 was predominantly detected in those areas with a local disruption of ZO-1 expression. Accordingly, transfected cells were only sparsely found in coculture after basolateral costimulation with TNF-α and IFN-γ. We designed a coculture model that mimics both the structural architecture of the alveolar-capillary barrier and inflammatory mechanisms with consequences on barrier characteristics, cytokine production and nanoparticle interaction. Our model will be suitable to systematically study adsorption, uptake and trafficking of newly synthesized nanosized carriers under different physiological conditions
    corecore