672 research outputs found

    An insight on the role of photosensitizer nanocarriers for Photodynamic Therapy

    Get PDF
    Photodynamic therapy (PDT) is a modality of cancer treatment in which tumor cells are destroyed by reactive oxygen species (ROS) produced by photosensitizers following its activation with visible or near infrared light. The PDT success is dependent on different factors namely on the efficiency of the photosensitizer deliver and targeting ability. In this review a special attention will be given to the role of some drug delivery systems to improve the efficiency of tetrapyrrolic photosensitizers to this type of treatment.publishe

    New nitroindazole-porphyrin conjugates: synthesis, characterization and antibacterial properties

    Get PDF
    The synthesis of new porphyrin-indazole hybrids by a Knoevenagel condensation of 2-formyl-5,10,15,20-tetraphenylporphyrin and N-methyl-nitroindazolylacetonitrile derivatives is reported. The target compounds were isolated in moderate to good yields (32-57%) and some of the isolated porphyrin-indazole conjugates showed good performance in the generation of singlet oxygen when irradiated with visible light. Their efficiency as photosensitizers in the photoinactivation of methicillin resistant Staphylococcus aureus-MRSA was evaluated. All derivatives showed to be able to photoinactivate the MRSA bacteria. Compound 3a appears to be the most promising photosensitiser (PS) in the photoinactivation of these bacteria, despite being the least efficient in singlet oxygen generation. The addition of potassium iodide (KI) significantly potentiated the antimicrobial Photodynamic Therapy (aPDT) process mediated by all the analysed porphyrin-indazole conjugates. The combined action of nitroindazole-porphyrins with potassium iodide (KI) action appears to be promising in the photoinactivation of MRSA.publishe

    5,10,15,20-Tetra­kis(1-methyl­pyridinium-4-yl)porphyrin tetra­iodide tetra­hydrate

    Get PDF
    The asymmetric unit of the title compound, C44H38N8 2+·4I−·4H2O, comprises two halves of non-equivalent cations of 5,10,15,20-tetra­kis­(1-methyl­pyridinium)porphyrin (with the full mol­ecule of each completed by the application of inversion symmetry), four charge balancing iodide anions and four water mol­ecules of crystallization (two water mol­ecules are fully occupied and four mol­ecules have a site occupancy of 50%). The porphyrin cations are arranged into supramolecular columns parallel to the b axis, mediated by π–π [centroid–centroid distance = 3.762 (4) Å] and C—H⋯π supra­molecular inter­actions [C⋯centroid distance = 3.522 (7) Å, C—H⋯centroid = 128°], leading to the formation of columns parallel to the b axis. The close packing leads to the presence of a one-dimensional channel filled with partially occupied water mol­ecules engaged in O—H⋯O and O—H⋯I hydrogen bond

    Decorating graphene nanosheets with electron accepting pyridyl-phthalocyanines

    Get PDF
    We describe herein the preparation of novel exfoliated graphene–phthalocyanine nanohybrids, and the investigation of their photophysical properties. Pyridyl-phthalocyanines (Pcs) 1–3 are presented as novel electron accepting building blocks of variable strengths with great potential for the exfoliation of graphite via their immobilization onto the basal plane of graphene in dimethylformamide (DMF) affording single layered and turbostratic graphene based G1–G3. G1–G3 were fully characterized (AFM, TEM, Raman, steady-state and pump probe transient absorption spectroscopy) and were studied in terms of electron donor–acceptor interactions in the ground and excited states. In this context, electron transfer upon photoexcitation from graphene to the electron accepting Pcs with dynamics, for example, in G2 of <1 and 330 ± 50 ps for charge separation and charge recombination, respectively, was corroborated in a series of steady-state and time-resolved spectroscopy experiments

    Photodynamic Antimicrobial Chemotherapy in Aquaculture: Photoinactivation Studies of Vibrio fischeri

    Get PDF
    BACKGROUND: Photodynamic antimicrobial chemotherapy (PACT) combines light, a light-absorbing molecule that initiates a photochemical or photophysical reaction, and oxygen. The combined action of these three components originates reactive oxygen species that lead to microorganisms' destruction. The aim was to evaluate the efficiency of PACT on Vibrio fischeri: 1) with buffer solution, varying temperature, pH, salinity and oxygen concentration values; 2) with aquaculture water, to reproduce photoinactivation (PI) conditions in situ. METHODOLOGY/PRINCIPAL FINDINGS: To monitor the PI kinetics, the bioluminescence of V. fischeri was measured during the experiments. A tricationic meso-substituted porphyrin (Tri-Py(+)-Me-PF) was used as photosensitizer (5 µM in the studies with buffer solution and 10-50 µM in the studies with aquaculture water); artificial white light (4 mW cm(-2)) and solar irradiation (40 mW cm(-2)) were used as light sources; and the bacterial concentration used for all experiments was ≈10(7) CFU mL(-1) (corresponding to a bioluminescence level of 10(5) relative light units--RLU). The variations in pH (6.5-8.5), temperature (10-25°C), salinity (20-40 g L(-1)) and oxygen concentration did not significantly affect the PI of V. fischeri, once in all tested conditions the bioluminescent signal decreased to the detection limit of the method (≈7 log reduction). The assays using aquaculture water showed that the efficiency of the process is affected by the suspended matter. Total PI of V. fischeri in aquaculture water was achieved under solar light in the presence of 20 µM of Tri-Py(+)-Me-PF. CONCLUSIONS/SIGNIFICANCE: If PACT is to be used in environmental applications, the matrix containing target microbial communities should be previously characterized in order to establish an efficient protocol having into account the photosensitizer concentration, the light source and the total light dose delivered. The possibility of using solar light in PACT to treat aquaculture water makes this technology cost-effective and attractive

    Antimicrobial Photodynamic Therapy: Study of Bacterial Recovery Viability and Potential Development of Resistance after Treatment

    Get PDF
    Antimicrobial photodynamic therapy (aPDT) has emerged in the clinical field as a potential alternative to antibiotics to treat microbial infections. No cases of microbial viability recovery or any resistance mechanisms against it are yet known. 5,10,15-tris(1-Methylpyridinium-4-yl)-20-(pentafluorophenyl)-porphyrin triiodide (Tri-Py+-Me-PF) was used as photosensitizer. Vibrio fischeri and recombinant Escherichia coli were the studied bacteria. To determine the bacterial recovery after treatment, Tri-Py+-Me-PF (5.0 μM) was added to bacterial suspensions and the samples were irradiated with white light (40 W m−2) for 270 minutes. Then, the samples were protected from light, aliquots collected at different intervals and the bioluminescence measured. To assess the development of resistance after treatment, bacterial suspensions were exposed to white light (25 minutes), in presence of 5.0 μM of Tri-Py+-Me-PF (99.99% of inactivation) and plated. After the first irradiation period, surviving colonies were collected from the plate and resuspended in PBS. Then, an identical protocol was used and repeated ten times for each bacterium. The results suggest that aPDT using Tri-Py+-Me-PF represents a promising approach to efficiently destroy bacteria since after a single treatment these microorganisms do not recover their viability and after ten generations of partially photosensitized cells neither of the bacteria develop resistance to the photodynamic process
    • …
    corecore