6 research outputs found

    Epidemiological Surveillance of Birth Defects Compatible with Thalidomide Embryopathy in Brazil

    Get PDF
    The thalidomide tragedy of the 1960s resulted in thousands of children being born with severe limb reduction defects (LRD), among other malformations. In Brazil, there are still babies born with thalidomide embryopathy (TE) because of leprosy prevalence, availability of thalidomide, and deficiencies in the control of drug dispensation. Our objective was to implement a system of proactive surveillance to identify birth defects compatible with TE. Along one year, newborns with LRD were assessed in the Brazilian hospitals participating in the Latin-American Collaborative Study of Congenital Malformations (ECLAMC). A phenotype of LRD called thalidomide embryopathy phenotype (TEP) was established for surveillance. Children with TEP born between the years 2000–2008 were monitored, and during the 2007–2008 period we clinically investigated in greater detail all cases with TEP (proactive period). The period from 1982 to 1999 was defined as the baseline period for the cumulative sum statistics. The frequency of TEP during the surveillance period, at 3.10/10,000 births (CI 95%: 2.50–3.70), was significantly higher than that observed in the baseline period (1.92/10,000 births; CI 95%: 1.60–2.20), and not uniformly distributed across different Brazilian regions. During the proactive surveillance (2007–2008), two cases of suspected TE were identified, although the two mothers had denied the use of the drug during pregnancy. Our results suggest that TEP has probably increased in recent years, which coincides with the period of greater thalidomide availability. Our proactive surveillance identified two newborns with suspected TE, proving to be a sensitive tool to detect TE. The high frequency of leprosy and the large use of thalidomide reinforce the need for a continuous monitoring of TEP across Brazil

    Androgen-Induced Cell Migration: Role of Androgen Receptor/Filamin A Association

    Get PDF
    Background: Androgen receptor (AR) controls male morphogenesis, gametogenesis and prostate growth as well as development of prostate cancer. These findings support a role for AR in cell migration and invasiveness. However, the molecular mechanism involved in AR-mediated cell migration still remains elusive. Methodology/Principal Findings: Mouse embryo NIH3T3 fibroblasts and highly metastatic human fibrosarcoma HT1080 cells harbor low levels of transcriptionally incompetent AR. We now report that, through extra nuclear action, AR triggers migration of both cell types upon stimulation with physiological concentrations of the androgen R1881. We analyzed the initial events leading to androgen-induced cell migration and observed that challenging NIH3T3 cells with 10 nM R1881 rapidly induces interaction of AR with filamin A (FlnA) at cytoskeleton. AR/FlnA complex recruits integrin beta 1, thus activating its dependent cascade. Silencing of AR, FlnA and integrin beta 1 shows that this ternary complex controls focal adhesion kinase (FAK), paxillin and Rac, thereby driving cell migration. FAK-null fibroblasts migrate poorly and Rac inhibition by EHT impairs motility of androgen-treated NIH3T3 cells. Interestingly, FAK and Rac activation by androgens are independent of each other. Findings in human fibrosarcoma HT1080 cells strengthen the role of Rac in androgen signaling. The Rac inhibitor significantly impairs androgen-induced migration in these cells. A mutant AR, deleted of the sequence interacting with FlnA, fails to mediate FAK activation and paxillin tyrosine phosphorylation in androgen-stimulated cells, further reinforcing the role of AR/FlnA interaction in androgen-mediated motility. Conclusions/Significance: The present report, for the first time, indicates that the extra nuclear AR/FlnA/integrin beta 1 complex is the key by which androgen activates signaling leading to cell migration. Assembly of this ternary complex may control organ development and prostate cancer metastasis

    Activation of p38MAPK Contributes to Expanded Polyglutamine-Induced Cytotoxicity

    Get PDF
    The signaling pathways that may modulate the pathogenesis of diseases induced by expanded polyglutamine proteins are not well understood.Herein we demonstrate that expanded polyglutamine protein cytotoxicity is mediated primarily through activation of p38MAPK and that the atypical PKC iota (PKCiota) enzyme antagonizes polyglutamine-induced cell death through induction of the ERK signaling pathway. We show that pharmacological blockade of p38MAPK rescues cells from polyglutamine-induced cell death whereas inhibition of ERK recapitulates the sensitivity observed in cells depleted of PKCiota by RNA interference. We provide evidence that two unrelated proteins with expanded polyglutamine repeats induce p38MAPK in cultured cells, and demonstrate induction of p38MAPK in an in vivo model of neurodegeneration (spinocerebellar ataxia 1, or SCA-1).Taken together, our data implicate activated p38MAPK in disease progression and suggest that its inhibition may represent a rational strategy for therapeutic intervention in the polyglutamine disorders

    Pollen respiratory allergy: Is it really seasonal?

    No full text
    Allergic rhinitis (AR) is a highly prevalent respiratory condition that carries a heavy burden and can have a significant impact on patient quality of life. AR is caused by seasonal or perennial exposure to outdoor pollens and molds as well as indoor allergic triggers. In this review article, we discuss the factors associated with the development of AR throughout the year and the fact that patients with AR need continuous treatment rather than seasonal treatment. Conventionally, AR has been mainly categorized into seasonal AR and perennial AR, but these classes do not seem to be well-adapted. Climate changes, temperature changes, and high carbon dioxide (CO2) concentration affect the growth of plants and increase the length of pollen seasons and pollen allergenicity. Air pollution aggravates allergic sensitization symptoms in AR sensitized individuals. Due to increased air pollution and indefinite pollen seasons AR symptoms are present throughout the year. Patients with AR often need continuous treatment, which should be considered while making the strategy for treating allergic rhinitis sufferers. Management of AR involves avoiding the allergen, medications for symptomatic relief, anti-inflammatory therapies, and allergy immunotherapy. Although the first-generation H1-antihistamines reduce AR symptoms, they cause sedation and impair cognitive functions; thus, second-generation antihistamines (ie, levocetirizine, loratadine, bilastine, fexofenadine) are preferred. The efficacy and safety of fexofenadine for the treatment of seasonal allergic rhinitis (SAR) symptoms have been demonstrated by numerous clinical studies, irrespective of the season and underlying allergen. In this review, we discuss the allergic rhinitis classification, the role of climate change, air pollution, and factors contributing to year-round symptoms in patients with AR and the need for continuous pharmacological treatment for management

    Gene Environment Interactions in Respiratory Diseases – Protocol, Standard Operative Procedures and Questionnaires

    No full text
    This publication contains the protocol and standard operating procedures of the GEIRD (Gene Environment Interaction in Respiratory Diseases) study. It is the result of three years of project work and discussion by Italian researchers involved in this study whose aim was to investigate the role that environmental factors, oxidative stress and genes play on the occurrence and persistence of respiratory diseases
    corecore