228 research outputs found

    Insight Into Provenance and Variability of Atmospheric Dust in Antarctic Ice Cores During the Late Pleistocene From Magnetic Measurements

    Get PDF
    We measured saturation isothermal remanent magnetization (SIRM), coercivity of remanence (Hcr), and insoluble dust mass concentration (IDC) of 49 ice samples from Vostok and EPICA Dome-C ice cores (Antarctica) as a measure of magnetic properties of the aerosol dust trapped in the ice. Samples range in age from marine isotopic stage (MIS) 7 to 19 in EPICA Dome-C ice core and from MIS 1 to 11 in Vostok ice core. Data from ice samples were compared with 86 samples from possible source areas (PSA) from East Antarctica, including 11 samples from South America and New Zealand. Previous results from MIS 1 to MIS 6 found that magnetic properties of aerosol dust could be divided in two distinct groups characterized by high-Hcr and low-SIRMdust for glacial samples, and low-Hcr and high-SIRMdust, for interglacial samples. The new data from older ice samples highlighted several discrepancies from this expectation with significant differences between Vostok and Dome-C sites. Magnetic properties of Antarctic PSA sample show a large variability, however, PSA samples from Victoria Land and few other, have magnetic properties compatible with that of the glacial dust, or more precisely with samples characterized by high dust flux. The new data from Pleistocene ice and from PSA samples confirm South American and Antarctic provenance of the largest atmospheric dust load typical of glacial stages. On the other hand, we did not found any PSA sample with properties compatible with the highly magnetic samples (mostly from interglacial stages), which are characterized by low IDC. These samples from the oldest and deepest part of the cores revealed a more complex picture than previously outlined from the analysis of MIS 1–6, and show unusual magnetic properties which can be tentatively attributed to post-depositional alteration occurring into the ice

    A long-term chronology of Pinus pinea L. from Parco della Versiliana (Pietrasanta, Italy) derived from treefall induced by a windstorm on March 4th-5th, 2015

    Get PDF
    Abstract Pinewoods are distinctive environmental elements in the Mediterranean coastal area and have both natural and historical significance. From the evening of March 4th to the morning of March 5th, 2015, a severe and unusual windstorm occurred in the Tuscany region of central Italy with wind gusts over 120 km/h. The windstorm caused vast damage to the anthropic and natural environment and wounded numerous trees in the renowned pinewoods of Parco della Versiliana in the Tyrrhenian coastal area. The meteorological calamity provided the opportunity to i) date the onset of the artificial plantation of the present Italian stone pine (Pinus pinea L.) forest to the 1820s, ii) build a long-term tree-ring chronology of the Italian stone pines in the area and iii) analyze the climate-growth relationship of the Italian stone pine in the study area. The resulting Versiliana chronology was derived from 60 trees and spanned from 1828 to 2014 (187 years), representing one of the longest living Italian stone pine forests on the Italian Peninsula. Finally, the climate-growth analysis highlighted that at this site the latewood width is positively influenced by summer temperature, a peculiarity worthy of further investigations

    NDVI Analysis for Monitoring Land-Cover Evolution on Selected Deglaciated Areas in the Gran Paradiso Group (Italian Western Alps)

    Get PDF
    The ongoing climate warming is affecting high-elevation areas, reducing the extent and the duration of glacier and snow covers, driving a widespread greening effect on the Alpine region. The impact assessment requires therefore the integration of the geomorphological context with altitudinal and ecological features of the study areas. The proposed approach introduces chronologically-constrained zones as geomorphological evidence for selecting deglaciated areas in the alpine and non-alpine belts. In the present study, the protected and low-anthropic-impacted areas of the Gran Paradiso Group (Italian Western Alps) were analysed using Landsat NDVI time series (1984–2022 CE). The obtained results highlighted a progressive greening even at a higher altitude, albeit not ubiquitous. The detected NDVI trends showed, moreover, how the local factors trigger the greening in low-elevation areas. Spectral reflectance showed a general decrease over time, evidencing the progressive colonisation of recently deglaciated surfaces. The results improved the discrimination between different greening rates in the deglaciated areas of the Alpine regions. The geomorphological-driven approach showed significant potential to support the comprehension of these processes, especially for fast-changing areas such as the high mountain regions

    integration of enhanced optical tracking techniques and imaging in igrt

    Get PDF
    Patient setup/Optical tracking/IGRT/Treatment surveillance. In external beam radiotherapy, modern technologies for dynamic dose delivery and beam conformation provide high selectivity in radiation dose administration to the pathological volume. A comparable accuracy level is needed in the 3-D localization of tumor and organs at risk (OARs), in order to accomplish the planned dose distribution in the reality of each irradiation session. In-room imaging techniques for patient setup verification and tumor targeting may benefit of the combined daily use of optical tracking technologies, supported by techniques for the detection and compensation of organ motion events. Multiple solutions to enhance the use of optical tracking for the on-line correction of target localization uncertainties are described, with specific emphasis on the compensation of setup errors, breathing movements and non-rigid deformations. The final goal is the implementation of customized protocols where appropriate external landmarks, to be tracked in real-time by means of noninvasive optical devices, are selected as a function of inner target localization. The presented methodology features high accuracy in patient setup optimization, also providing a valuable tool for on-line patient surveillance, taking into account both breathing and deformation effects. The methodic application of optical tracking is put forward to represent a reliable and low cost procedure for the reduction of safety margins, once the patient-specific correlation between external landmarks and inner structures has been established. Therefore, the integration of optical tracking with in-room imaging devices is proposed as a way to gain higher confidence in the framework of Image Guided Radiation Therapy (IGRT) treatments

    Pinus cembra L. tree-ring data as a proxy for summer mass-balance variability of the Careser Glacier (Italian Rhaetian Alps)

    Get PDF
    Glacial extent and mass-balance are sensitive climate proxies providing solid information on past climatic conditions. However, series of annual mass balance measurements of more than sixty years are scarce. To our knowledge, this is the first time the latewood density data (MXD) of the Swiss stone pine (Pinus cembra L.) has been used to reconstruct the summer mass balance (Bs) of an Alpine glacier. The MXD-based Bs well correlates with a Bs reconstruction based on the May to September temperature. Winter precipitation has been used as independent proxy to infer the winter mass balance and to obtain an annual mass balance (Bn) estimate dating back to the glaciological year 1811/12. The reconstructed MXD/precipitation-based Bn well correlates with the data both of the Careser and of other Alpine glaciers measured by the glaciological method. A number of critical issues should be considered in both proxies including nonlinear response of glacial mass balance to temperature, bedrock topography, ice thinning and fragmentation, MXD acquisition and standardization methods, and finally the “divergence problem” responsible for the recent reduced dendroglaciological reconstructions using this stable and reliable proxy

    GPR and seismic surveying in the World War I scenario of Punta Linke (Ortles-Cevedale Group, Italian Alps).

    Get PDF
    The Ortles-Cevedale Group was the setting of repeated clashes occurring under extreme conditions and at the highest altitudes of all fightings in the Great War (WWI). The research scenario associated with the group is very challenging because modern research faces a series of logistical and climatic obstacles. The gradual retreat of glaciers has unearthed several archaeological remains of WWI such as barracks, barbed wire, military ammunition, weapons and other materials. The study site is the saddle between M. Vioz and Punta Linke, where the Historic War Museum of Pejo, under the direction of the Archaeological Service of the Province of Trento (Soprintendenza per i Beni Culturali, Ufficio Beni Archeologici), started an archaeological excavation in the year 2009 of some of the infrastructure of the cableway station, which also includes a tunnel section in the bedrock. The saddle is placed at the head of Forni Glacier. GPR and seismic imaging was the best survey choice to characterize the glaciological and geo-archaeological context and to find structures or remains within the ice mass. Geophysical imaging spanned two campaigns in the years 2010 and 2011. The ice-rock interface was reconstructed in detail to depths greater than 45-50 m. The surface of the bedrock reveals a complex morphology, with several undulations and two rocky ridges elongated in the NNW-SSE direction. They identified some anomalous reflectors within the ice mass located near the western edge of the saddle of Punta Linke. The interpretation of radar profiles seems to indicate the presence of a tunnel in the ice, whose geometry and position is similar to others excavated in alpine glaciers during the Great War

    Surface exposure ages imply multiple low-amplitude Pleistocene variations in East Antarctic Ice Sheet, Ricker Hills, Victoria Land

    Get PDF
    One of the major issues in (palaeo-) climatology is the response of Antarctic ice sheets to global climate changes. Antarctic ice volume has varied in the past but the extent and timing of these fluctuations are not well known. In this study, we address the question of amplitude and timing of past Antarctic ice level changes by surface exposure dating using in situ produced cosmogenic nuclides (10Be and 21Ne). The study area lies in the Ricker Hills, a nunatak at the boundary of the East Antarctic Ice Sheet in southern Victoria Land. By determining exposure ages of erratic boulders from glacial drifts we directly date East Antarctic Ice Sheet variations. Erosion-corrected neon and beryllium exposure ages indicate that a major ice advance reaching elevations of about 500m above present ice levels occurred between 1.125 and 1.375 million years before present. Subsequent ice fluctuations were of lesser extent but timing is difficult as all erratic boulders from related deposits show complex exposure histories. Sample-specific erosion rates were on the order of 20-45cmMa-1 for a quartzite and 10-65cmMa-1 for a sandstone boulder and imply that the modern cold, arid climate has persisted since at least the early Pleistocen

    A Pinus cembra L. tree-ring record for late spring to late summer temperature in the Rhaetian Alps, Italy

    Get PDF
    Abstract Ongoing climate change strongly affects high-elevation environments in the European Alps, influencing the cryosphere and the biosphere and causing widespread retreat of glaciers and changes in biomes. Nevertheless, high-elevation areas often lack long meteorological series, and global datasets cannot represent local variations well. Thus, proxy data, such as tree rings, provide information on past climatic variations from these remote sites. Although maximum latewood density (MXD) chronologies provide better temperature information than those based on tree-ring width (TRW), MXD series from the European Alps are lacking. To derive high-quality temperature information for the Rhaetian Alps, Pinus cembra L. trees sampled at approximately 2000 m a.s.l. were used to build one MXD chronology spanning from 1647 to 2015. The MXD data were significantly and highly correlated with seasonal May-September mean temperatures. The MXD chronology showed a generally positive trend since the middle of the 19th century, interrupted by short phases of climatic deterioration in the beginning of the 20th century and in the 1970s, conforming with the temperature trends. Our results underline the potential for using Pinus cembra L. MXD to reconstruct mean temperature variations, especially during the onset and latter part of the growing season, providing additional information on parts of the growing season not inferred from TRW. Future studies on MXD for this species will increase the availability of temporal and spatial data, allowing detailed climate reconstructions

    Lack of effect of apolipoprotein C3 polymorphisms on indices of liver steatosis, lipid profile and insulin resistance in obese Southern Europeans.

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.BACKGROUND: Apolipoprotein C3 (APOC3) is a component of triglyceride-rich lipoproteins, and APOC3 rs2854116 and rs2854117 polymorphisms have been associated with non-alcoholic fatty liver disease, hypertriglyceridaemia, and insulin-resistance. OBJECTIVE: To determine if the APOC3 variants alter the susceptibility of obese subjects to develop liver damage, hypertrigliceridaemia, and insulin-resistance. METHODS: The study was carried out on 585 unrelated obese Italians (median body mass index BMI = 41 kg/m2) who were genotyped for the rs2854116 and rs2854117 variants. All participants underwent oral glucose tolerance tests (OGTT), with measurement of glucose, insulin, lipid parameters. Indices of insulin-resistance (HOMA and ISI) were calculated. Alanine transaminase (ALT) and aspartate transaminase (AST) were used as markers of liver injury. RESULTS: The study subjects were divided into two groups: those homozygous for the wild-type alleles at both SNPs (-482C and -455T alleles) and those who were carriers of at least one variant allele or both (-482T, -455C or both). Also each SNP was analysed independently. No significant differences were found in ALT and AST levels and in the lipid profile between the two groups. Insulin concentrations, glucose tolerance and insulin sensitivity were similar in the two groups. CONCLUSION: We did not identify any significant association between APOC3 polymorphisms and fatty liver disease, lipids, and insulin-resistance in obese subjects, thus not confirming the suggested role of these APOC3 gene sequence variants
    corecore