18 research outputs found

    Time course and specificity of sensory-motor alpha modulation during the observation of hand motor acts and gestures: a high density EEG study

    Get PDF
    The main aim of the present study was to explore, by means of high-density EEG, the intensity and the temporal pattern of event-related sensory-motor alpha desynchronization (ERD) during the observation of different types of hand motor acts and gestures. In particular, we aimed to investigate whether the sensory-motor ERD would show a specific modulation during the observation of hand behaviors differing for goal-relatedness (hand grasping of an object and meaningless hand movements) and social relevance (communicative hand gestures and grasping within a social context). Time course analysis of alpha suppression showed that all types of hand behaviors were effective in triggering sensory-motor alpha ERD, but to a different degree depending on the category of observed hand motor acts and gestures. Meaningless gestures and hand grasping were the most effective stimuli, resulting in the strongest ERD. The observation of social hand behaviors such as social grasping and communicative gestures, triggered a more dynamic time course of ERD compared to that driven by the observation of simple grasping and meaningless gestures. These findings indicate that the observation of hand motor acts and gestures evoke the activation of a motor resonance mechanism that differs on the basis of the goal-relatedness and the social relevance of the observed hand behavior

    The hTERT and iCasp9 Transgenes Affect EOMES and T-BET Levels in NK Cells and the Introduction of Both Genes Improves NK Cell Proliferation in Response to IL2 and IL15 Stimulation

    No full text
    The NK cell exhaustion state evolving during extensive and prolonged cultivation is still one of the limitations of NK cell approaches. In this research, we transduced NK cells with the hTERT and iCasp9 genes. hTERT overexpression can prevent the functional exhaustion of NK cells during long-term cultivation, but, still, the therapeutic use of such cells is unsafe without irradiation. To overcome this obstacle, we additionally transduced NK cells with the iCasp9 transgene that enables the rapid elimination of modified cells. We compared the proliferative and functional activities of the hTERT- and/or iCasp9-modified NK cells, determined their exhaustion state and monitored the levels of EOMES and T-BET, the main NK cell transcription factors. The hTERT and iCasp9 genes were shown to affect the EOMES and T-BET levels differently in the NK cells. The EOMES+T-BET+ phenotype characterized the functionally active NK cells during two months of culture upon stimulation with IL2 and K562-mbIL21 feeder cells, which induced the greatest expansion rates of the NK cells, independently of the transgene type. On the other hand, under cytokine stimulation, the hTERT-iCasp9-NK cells displayed improved proliferation over NK cells modified with iCasp9 alone and showed an increased proliferation rate compared to the untransduced NK cells under stimulation with IL2 and IL15, which was accompanied by reduced immune checkpoint molecule expression. The individual changes in the EOMES and T-BET levels strictly corresponded to the NK cell functional activity, the surface levels of activating and inhibitory receptors along with the expansion rate and expression levels of pro-survival and pro-apoptotic genes

    Multiple Actions of Telomerase Reverse Transcriptase in Cell Death Regulation

    No full text
    Telomerase reverse transcriptase (TERT), a core part of telomerase, has been known for a long time only for its telomere lengthening function by reverse transcription of RNA template. Currently, TERT is considered as an intriguing link between multiple signaling pathways. The diverse intracellular localization of TERT corresponds to a wide range of functional activities. In addition to the canonical function of protecting chromosome ends, TERT by itself or as a part of the telomerase complex participates in cell stress responses, gene regulation and mitochondria functioning. Upregulation of TERT expression and increased telomerase activity in cancer and somatic cells relate to improved survival and persistence of such cells. In this review, we summarize the data for a comprehensive understanding of the role of TERT in cell death regulation, with a focus on the interaction of TERT with signaling pathways involved in cell survival and stress response

    Telomerase Reverse Transcriptase Increases Proliferation and Lifespan of Human NK Cells without Immortalization

    No full text
    NK cells are the first line of defense against viruses and malignant cells, and their natural functionality makes these cells a promising candidate for cancer cell therapy. The genetic modifications of NK cells, allowing them to overcome some of their inherent limitations, such as low proliferative potential, can enable their use as a therapeutic product. We demonstrate that hTERT-engineered NK cell cultures maintain a high percentage of cells in the S/G2 phase for an extended time after transduction, while the life span of NK cells is measurably extended. Bulk and clonal NK cell cultures pre-activated in vitro with IL-2 and K562-mbIL21 feeder cells can be transduced with hTERT more efficiently compared with the cells activated with IL-2 alone. Overexpressed hTERT was functionally active in transduced NK cells, which displayed upregulated expression of the activation marker HLA-DR, and decreased expression of the maturation marker CD57 and activating receptor NKp46. Larger numbers of KIR2DL2/3+ cells in hTERT-engineered populations may indicate that NK cells with this phenotype are more susceptible to transduction. The hTERT-modified NK cells demonstrated a high natural cytotoxic response towards K562 cells and stably expressed Ki67, a proliferation marker. Overall, our data show that ectopic hTERT expression in NK cells enhances their activation and proliferation, extends in vitro life span, and can be a useful tool in developing NK-based cancer cell therapies

    RESEARCH ARTICLE

    No full text
    Time course and specificity of sensory-motor alpha modulation during the observation of hand motor acts and gestures: a high density EEG stud

    Formation of ethnosocial identity in the matrix of media discourse

    Get PDF
    The authors analyze the linguo-information model of the country in the modern media discourse of Russia and China. Screening of Russian and Chinese sources uses the method of contextual analysis with an emphasis on the implicit content of the media image of the country, the descriptive method, the method of cultural interpretation, content analysis. Information wars use the image of a country as a starting point in the matrix of media discourse to emphasize the perception of information. The authors propose the concept of a media matrix for understanding the cognitive side of media images of geopolitical topoobjects. The authors substantiate the introduction of the terms linguoinforneme and linguoinformational step into scientific circulation from the point of view of the structure of the matrix of geopolitonyms of the media. The media image of the country in the media discourse is diverse, being realized in evaluative linguistic systems. The authors show what the mythologized / realistic perception of the image of the country is based on, how it is conditioned by the tasks of geopolitics, how it correlates with the strategies of international cooperation and how it affects intercultural communication

    Epithelial-Immune Cell Crosstalk Determines the Activation of Immune Cells In Vitro by the Human Cathelicidin LL-37 at Low Physiological Concentrations

    No full text
    The only human cathelicidin, LL-37, is a host defense antimicrobial peptide with antimicrobial activities against protozoans, fungi, Gram(+) and Gram(−) bacteria, and enveloped viruses. It has been shown in experiments in vitro that LL-37 is able to induce the production of various inflammatory and anti-inflammatory cytokines and chemokines by different human cell types. However, it remains an open question whether such cytokine induction is physiologically relevant, as LL-37 exhibited its immunomodulatory properties at concentrations that are much higher (>20 μg/mL) than those observed in non-inflamed tissues (1–5 μg/mL). In the current study, we assessed the permeability of LL-37 across the Caco-2 polarized monolayer and showed that this peptide could pass through the Caco-2 monolayer with low efficiency, which predetermined its low absorption in the gut. We showed that LL-37 at low physiological concentrations (<5 μg/mL) was not able to directly activate monocytes. However, in the presence of polarized epithelial monolayers, LL-37 is able to activate monocytes through the MAPK/ERK signaling pathway and induce the production of cytokines, as assessed by a multiplex assay at the protein level. We have demonstrated that LL-37 is able to fulfill its immunomodulatory action in vivo in non-inflamed tissues at low physiological concentrations. In the present work, we revealed a key role of epithelial-immune cell crosstalk in the implementation of immunomodulatory functions of the human cathelicidin LL-37, which might shed light on its physiological action in vivo

    Analysis of NK cell clones obtained using interleukin-2 and gene-modified K562 cells revealed the ability of "senescent" NK cells to lose CD57 expression and start expressing NKG2A.

    No full text
    In this work, we analyzed the phenotype and growth of human NK cell clones obtained by the stimulation of individual NK cells with IL-2 and gene-modified K562 feeder cells expressing membrane-bound IL-21 (K562-mbIL21). We generated clones from NK cells at distinct differentiation and activation stages, determined by CD56, CD57 and HLA-DR expression levels. Less differentiated CD56bright NK cell subsets showed higher cloning efficiency compared with more differentiated CD56dim subsets, especially with the CD57bright subset. However, clones from the CD56dimCD57- subset lived longer on average than other subsets. Moreover, several clones with the highest cell numbers were derived from CD56dimCD57-HLA-DR-cells. Most of the clones including those derived from more differentiated CD56dimCD57+/-NKG2A- NK cells showed a less-differentiated NKG2A+ phenotype. Also, CD57- cells were frequently observed in clones derived from CD57+ NK cells suggesting the loss of CD57 during the cloning process. On the other hand, KIR surface expression once detected for a clone never disappeared entirely, confirming irreversibility of the KIR expression. In summary, we have demonstrated that in specific conditions terminally differentiated CD57+ human NK cells are able to acquire the CD57- phenotype that was previously not observed and, thus, was considered impossible
    corecore