4 research outputs found

    Repeated magmatic intrusions at El Hierro Island following the 2011–2012 submarine eruption

    Get PDF
    After more than 200 years of quiescence, in July 2011 an intense seismic swarm was detected beneath the center of El Hierro Island (Canary Islands), culminating on 10 October 2011 in a submarine eruption, 2 km off the southern coast. Although the eruption officially ended on 5 March 2012, magmatic activity continued in the area. From June 2012 to March 2014, six earthquake swarms, indicative of magmatic intrusions, were detected underneath the island. We have studied these post-eruption intrusive events using GPS and InSAR techniques to characterize the ground surface deformation produced by each of these intrusions, and to determine the optimal source parameters (geometry, location, depth, volume change). Source inversions provide insight into the depth of the intrusions (~ 11–16 km) and the volume change associated with each of them (between 0.02 and 0.13 km3). During this period, > 20 cm of uplift was detected in the central-western part of the island, corresponding to approximately 0.32–0.38 km3 of magma intruded beneath the volcano. We suggest that these intrusions result from deep magma migrating from the mantle, trapped at the mantle/lower crust discontinuity in the form of sill-like bodies. This study, using joint inversion of GPS and InSAR data in a post-eruption period, provides important insight into the characteristics of the magmatic plumbing system of El Hierro, an oceanic intraplate volcanic island

    Driving magma to the surface: The 2011-2012 El Hierro Volcanic Eruption

    Get PDF
    We reanalyzed the seismic and deformation data corresponding to the preeruptive unrest on El Hierro (Canary Islands) in 2011. We considered new information about the internal structure of the island. We updated the seismic catalog to estimate the full evolution of the released seismic energy and demonstrate the importance of nonlocated earthquakes. Using seismic data and GPS displacements, we characterized the shear-tensile type of the predominant fracturing and modeled the strain and stress fields for different time periods. This enabled us to identify a prolonged first phase characterized by hydraulic tensile fracturing, which we interpret as being related to the emplacement of new magma below the volcanic edifice on El Hierro. This was followed by postinjection unidirectional migration, probably controlled by the stress field and the distribution of the structural discontinuities. We identified the effects of energetic magmatic pulses occurring a few days before the eruption that induced shear seismicity on preexisting faults within the volcano and raised the Coulomb stress over the whole crust. We suggest that these magmatic pulses reflect the crossing of the Moho discontinuity, as well as changes in the path geometry of the dyke migration toward the surface. The final phase involved magma ascent through a prefractured crust. © 2017. American Geophysical Union.This research was partially supported by the Instituto Geográfico Nacional (IGN) and the Spanish MINECO project CGL2014–58821-C2-1-R.Peer reviewe
    corecore