63 research outputs found

    Mesenchymal stem cells with rhBMP-2 inhibits the growth of canine osteosarcoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The bone morphogenetic proteins (BMPs) belong to a unique group of proteins that includes the growth factor TGF-β. BMPs play important roles in cell differentiation, cell proliferation, and inhibition of cell growth. They also participate in the maturation of several cell types, depending on the microenvironment and interactions with other regulatory factors. Depending on their concentration gradient, the BMPs can attract various types of cells and act as chemotactic, mitogenic, or differentiation agents. BMPs can interfere with cell proliferation and the formation of cartilage and bone. In addition, BMPs can induce the differentiation of mesenchymal progenitor cells into various cell types, including chondroblasts and osteoblasts. The aim of this study was to analyze the effects of treatment with rhBMP-2 on the proliferation of canine mesenchymal stem cells (cMSCs) and the tumor suppression properties of rhBMP-2 in canine osteocarcoma (OST) cells. Osteosarcoma cell lines were isolated from biopsies and excisions of animals with osteosarcoma and were characterized by the Laboratory of Biochemistry and Biophysics, Butantan Institute. The mesenchymal stem cells were derived from the bone marrow of canine fetuses (cMSCs) and belong to the University of São Paulo, College of Veterinary Medicine (FMVZ-USP) stem cell bank. After expansion, the cells were cultured in a 12-well Transwell system; cells were treated with bone marrow mesenchymal stem cells associated with rhBMP2. Expression of the intracytoplasmic and nuclear markers such as Caspase-3, Bax, Bad, Bcl-2, Ki-67, p53, Oct3/4, Nanog, Stro-1 were performed by flow citometry.</p> <p>Results</p> <p>We evaluated the regenerative potential of <it>in vitro </it>treatment with rhBMP-2 and found that both osteogenic induction and tumor regression occur in stem cells from canine bone marrow. rhBMP-2 inhibits the proliferation capacity of OST cells by mechanisms of apoptosis and tumor suppression mediated by p53.</p> <p>Conclusion</p> <p>We propose that rhBMP-2 has great therapeutic potential in bone marrow cells by serving as a tumor suppressor to increase p53 and the pro-apoptotic proteins Bad and Bax, as well as by increasing the activity of phosphorylated caspase 3.</p> <p>Study design</p> <p>Canine bone marrow mesenchymal stem cells associated with rhBMP2 in canine osteosarcoma treatment: "<it>in vitro</it>" study</p

    Proliferative analysis of trophoblastic cells in cattle

    Get PDF
    The aim of the present study was to evaluate the cell proliferative activity, by AgNORs number, in different regions of bovine placenta throughout gestation. A total of 28 bovine placentas were separated into four groups: group I (60 to 120 days), group II (121 to 170 days), group III (171 to 220 days), and group IV (221 to 290 days). It was found a greater number of AgNORs in giant trophoblastic cells (GTC) when compared with mononuclear trophoblastic cells (MTC) (p<0,001) in all regions and gestational groups analyzed, that confirms their intensive synthesis activity in trophoblast epithelium. The central region of the placentome begins an intense proliferative activity in group II, observed by clusters, while placentomes edges showed a higher number of clusters on group III. These data suggest that the central region of the placentomes began an intense proliferative activity prior to its edge, both declines at the end of pregnancy. Interplacentomal area showed a higher number of AgNORs in the group IV, suggesting a higher proliferative activity of these cells at the end of pregnancy. The results of this study indicate that the proliferative activity, as determined by the amount of intranuclear AgNORs, exhibits patterns that are not only specific to each type of trophoblastic cells, but also for each specific region of bovine placenta throughout pregnancy.Este estudo teve como objetivo analisar atividade proliferativa das células trofoblásticas, através da quantificação de AgNORs, em diferentes regiões da placenta bovina ao longo da gestação. Foram utilizados 28 úteros, sendo estes agrupados de acordo com as idades gestacionais: grupo I (60-120 dias); II (121- 170 dias); III (171-220 dias) e IV (221-290 dias). Foi encontrado um número significativamente maior de AgNORs nas células trofoblásticas gigantes (CTG) em relação às mononucleadas (CTM) (p<0,001) em todas as regiões e grupos gestacionais analisados, o que confirma sua intensa atividade de síntese no epitélio trofoblástico. A região central do placentônio inicia uma atividade proliferativa mais intensa já no grupo II, observada pelo número de clusters, enquanto que a margem do placentônio apresenta uma maior quantidade de clusters no grupo III. Estes dados sugerem que a região central do placentônio inicia uma intensa atividade proliferativa anteriormente a sua margem, ambas declinando no final da gestação. A área interplacentomal apresentou um maior número de AgNORs no último grupo gestacional, sugerindo uma maior atividade proliferativa dessas células no final da prenhez. Os resultados deste estudo indicam que a atividade proliferativa, determinada pela quantidade de AgNORs intranucleares, exibe padrões que são específicos não somente para cada tipo de célula trofoblástica, mas também para cada região específica da placenta bovina ao longo da gestação

    A novel proteasome inhibitor acting in mitochondrial dysfunction, ER stress and ROS production

    Get PDF
    In cancer-treatment, potentially therapeutic drugs trigger their effects through apoptotic mechanisms. Generally, cell response is manifested by Bcl-2 family protein regulation, the impairment of mitochondrial functions, and ROS production. Notwithstanding, several drugs operate through proteasome inhibition, which, by inducing the accumulation and aggregation of misfolded or unfolded proteins, can lead to endoplasmic reticulum (ER) stress. Accordingly, it was shown that Amblyomin-X, a Kunitz-type inhibitor identified in the transcriptome of the Amblyomma cajennense tick by ESTs sequence analysis of a cDNA library, obtained in recombinant protein form, induces apoptosis in murine renal adenocarcinoma (RENCA) cells by: inducing imbalance between pro- and anti-apoptotic Bcl-2 family proteins, dysfunction/mitochondrial damage, production of reactive oxygen species (ROS), caspase cascade activation, and proteasome inhibition, all ER-stress inductive. Moreover, there was no manifest action on normal mouse-fibroblast cells (NHI3T3), suggesting an Amblyomin-X tumor-cell selectivity. Taken together, these evidences indicate that Amblyomin-X could be a promising candidate for cancer therapy.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Uniao Quimica Farmaceutica NacionalConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Inst Butantan, Lab Bioquim & Biofis, BR-05503900 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Bioquim, São Paulo, BrazilInst Butantan, Programa Posgrad Interunidades Biotecnol, USP, IPT, BR-05503900 São Paulo, BrazilUniv São Paulo, Fac Med, Lab Oncol Expt LIM24, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Bioquim, São Paulo, BrazilFAPESP: FAPESP 2010/52669-3FAPESP: CAT/CEPID - 1998/14307-9Web of Scienc

    Characterization of mesenchymal stem cells derived from the equine synovial fluid and membrane

    Get PDF
    Abstract\ud \ud Background\ud Isolation of mesenchymal stem cells (MSCs) in equines, has been reported for different tissues including bone marrow, adipose, umbilical cord, peripheral blood, and yolk sac. In regard to the MSCs derived from synovial fluid (SF) or membrane (SM), there is data available for humans, dogs, pigs, goats and horses. Especially in equines, these cells have being considered promising candidates for articular regeneration. Herein, we established and characterized MSCs obtained from equine SF and SM. Samples were obtained during arthroscopy and cultured using MEM (Minimum Essential Medium). MSCs were characterized by morphology and expression of specific markers for stem cells, pluripotency, inflammation, and cell cycle.\ud \ud \ud Results\ud The medium MEM was more effective (97 % ± 2) to maintain both cultures. The cultures were composed by adherent cells with fibroblast-like shape, which had a growth pattern represented by a sigmoidal curve. After the expansion, the cells were analyzed by flow cytometry for stem cells, inflammatory, and cell cycle markers, and both lineages showed significant expression of CD45, Oct3/4, Nanog, CD105, CD90, CD34, CD117, CD133, TRA-1-81, VEGF, and LY6a. In contrast, there were differences in the cell cycle phases between the lineages, which was not observed in relation to the mitochondrial electrical potential.\ud \ud \ud Conclusion\ud Given the large impact that joint pathology has on the athletic performance horses, our results suggested that the SF and SM are promising sources of stem cells with satisfactory characteristics of growth and gene expression that can be used in equine regenerative medicine.This research was supported by grants from CNPq, FAPESP and NETCEM.\ud The funders had no role in the study design, data collection, analysis and\ud interpretation of data, preparation of the manuscript, and decision to\ud publish. We warmly thank the Veterinary Hospital of the School of Veterinary\ud Medicine and Animal Science at USP to provide the biological samples

    Abarema cochliacarpos extract decreases the inflammatory process and skeletal muscle injury induced by bothrops leucurus venom

    Get PDF
    Snakebites are a public health problem, especially in tropical countries.However, treatment with antivenomhas limited effectiveness against venoms’ local effects. Here, we investigated the ability of Abarema cochliacarpos hydroethanolic extract (EAc) to protect mice against injection of Bothrops leucurus venom. Swiss mice received perimuscular venom injection and were subsequently treated orally with EAc in different doses. Treatment with EAc 100, 200, and 400mg/kg reduced the edema induced by B. leucurus in 1%, 13%, and 39%, respectively. Although lower doses showed no antihypernociceptive effect in the Von Frey test, the higher dose significantly reduced hyperalgesia induced by the venom. Antimyotoxic activity of EAc was also observed by microscopy assessment, with treated muscles presenting preserved structures, decreased edema, and inflammatory infiltrate as compared to untreated ones. Finally, on the rotarod test, the treated mice showed better motor function, once muscle fibers were preserved and there were less edema and pain. Treated mice could stand four times more time on the rotating rod than untreated ones. Our results have shown that EAc presented relevant activities against injection of B. leucurus venom in mice, suggesting that it can be considered as an adjuvant in the treatment of envenomation

    Bcl-2 family proteins and cytoskeleton changes involved in DM-1 cytotoxic effect on melanoma cells

    Get PDF
    Melanoma is one of the most aggressive types of skin cancer and its incidence rate is still increasing. All existing treatments are minimally effective. Consequently, new therapeutic agents for melanoma treatment should be developed. The DM-1 compound is a curcumin analog that possesses several curcumin characteristics, such as antiproliferative, antitumor, and anti-metastatic properties. The aim of this study was to evaluate the different signaling pathways involved in the cytotoxic effect of DM-1 on melanoma cells. The apoptotic process and cytoskeletal changes were evaluated by immunoblotting and immunofluorescence, respectively, in melanoma cells. After DM-1 treatment, SK-MEL-5 melanoma cells showed actin filament disorganization with spicule formation throughout the cytoskeleton and significant reduction of focal adhesion as well as they were present only at cell extremities, conferring a poor connection between the cell and the substrate. Besides this, there was significant filopodium retraction and loss of typical cytoskeleton scaffold. These modifications contributed to cell detachment followed by cell death. Furthermore, DM-1-induced apoptosis was triggered by multiple Bcl-2 proteins involved in both the extrinsic and the intrinsic apoptotic pathways. SK-MEL-5 cells showed a death mechanism mainly by Bcl-2/Bax ratio decrease, whereas A375 cells presented apoptosis induction by Mcl-1 and Bcl-xL downregulation. In SK-MEL-5 and A375 melanoma cells, there was a significant increase in the active form of caspase 9, and the inactive form of the effector caspase 3 was decreased in both cell lines. Expression of cleaved poly ADP ribose polymerase was increased after DM-1 treatment in these melanoma cell lines, demonstrating that the apoptotic process occurred. Altogether, these data elucidate the cellular and molecular mechanisms involved in the cytotoxicity induced by the antitumor agent DM-1 in melanoma cells

    DM-1, sodium 4-[5-(4-hydroxy-3-methoxyphenyl)-3-oxo-penta-1,4-dienyl]-2-methoxy-phenolate: a curcumin analog with a synergic effect in combination with paclitaxel in breast cancer treatment

    No full text
    This paper describes a new method for the preparation of sodium 4-[5-(4-hydroxy-3-methoxyphenyl)-3-oxo-penta-1,4-dienyl]-2-methoxy-phenolate, DM-1, and 3-oxo-penta-1,4-dienyl-bis (2-methoxy-phenolate), DM-2. The aim of this work was to evaluate the antitumor effects of DM-1 in adjuvant chemotherapy for breast cancer treatment. Mice bearing mammary adenocarcinomas (Ehrlich ascites tumors) were treated with paclitaxel alone, DM-1 alone, and paclitaxel + DM-1. Tumor samples were used to perform cytological analysis by the Papanicolaou method and apoptosis analysis by annexin V and phosphorylated caspase 3. The paclitaxel + DM-1 group had decreased tumor areas and tumor volumes, and the frequency of metastasis was significantly reduced. This caused a decrease in cachexia, which is usually caused by the tumor. Furthermore, treatment with paclitaxel + DM-1 and DM-1 alone increased the occurrence of apoptosis up to 40% in tumor cells, which is 35% more than in the group treated with paclitaxel alone. This cell death was mainly caused through phosphorylated caspase 3 (11% increase in paclitaxel + DM-1 compared to the paclitaxel group), as confirmed by reduced malignancy criteria in the ascitic fluid. DM-1 emerges as a potential treatment for breast cancer and may act as an adjuvant in chemotherapy, enhancing antitumor drug activity with reduced side effects.Sao Paulo Research FoundationSao Paulo Research FoundationFAPESP [2006/59450-1, 2004/11351-0]FAPES
    corecore