520 research outputs found
Optimality In Reserve Selection Algorithms: When Does It Matter And How Much?
This paper responds to recent criticisms in Biological Conservation of heuristic reserve selection algorithms. These criticisms primarily concern the fact that heuristic algorithms cannot guarantee an optimal solution to the problem of representing a group of targeted natural features in a subset of the sites in a region. We discuss optimality in the context of a range of needs for conservation planning. We point out that classical integer linear programming methods that guarantee an optimal solution, like branch and bound algorithms, are currently intractable for many realistic problems. We also show that heuristics have practical advantages over classical methods and that suboptimality is not necessarily a disadvantage for many real-world applications. Further work on alternative reserve selection algorithms is certainly needed, but the necessary criteria for assessing their utility must be broader than mathematical optimality
Rotational spectroscopy of malononitrile and its corresponding monoisocyanide isomer, isocyanoacetonitrile
International audienceContext. Nitrites constitute almost 20% of the molecules observed in the interstellar medium, whereas only one dinitrile and one isocyanonitrile compound have been detected up to now. The lack of detections of such compounds may be partially explained by the lack of accurate spectroscopic data on their rotational spectra. Aims. Two small seven-atom dinitriles, malononitrile NCCH2CN and isocyanoacetonitrile NCCH2NC, were chosen as target species for this study. For malononitrile the goal of the study is to systematize all the previous measurements, and to extend the measurements to the sub-millimeter wavelength range. The spectrum of isocyanoacetonitrile has not been studied before. Methods. The rotational spectra of the two molecules were measured in the frequency range 150-660 GHz using the Lille fast-scan spectrometer. The spectroscopic study was supported by high-level theoretical calculations on the structure of these molecules and their harmonic force field. Results. Accurate frequency predictions for malononitrile and isocyanoacetonitrile were calculated on the basis of the analysis of their rotational spectra. The influence of the spin statistics on the intensities of the lines of malononitrile was taken into account. The provided line lists and sets of molecular parameters meet the needs of astrophysical searches for the two molecules
Discovery of the acetyl cation, CH3CO+, in space and in the laboratory
Using the Yebes 40m and IRAM 30m radiotelescopes, we detected two series of
harmonically related lines in space that can be fitted to a symmetric rotor.
The lines have been seen towards the cold dense cores TMC-1, L483, L1527, and
L1544. High level of theory ab initio calculations indicate that the best
possible candidate is the acetyl cation, CH3CO+, which is the most stable
product resulting from the protonation of ketene. We have produced this species
in the laboratory and observed its rotational transitions Ju = 10 up to Ju =
27. Hence, we report the discovery of CH3CO+ in space based on our
observations, theoretical calculations, and laboratory experiments. The derived
rotational and distortion constants allow us to predict the spectrum of CH3CO+
with high accuracy up to 500 GHz. We derive an abundance ratio
N(H2CCO)/N(CH3CO+) = 44. The high abundance of the protonated form of H2CCO is
due to the high proton affinity of the neutral species. The other isomer,
H2CCOH+, is found to be 178.9 kJ/mol above CH3CO+. The observed intensity ratio
between the K=0 and K=1 lines, 2.2, strongly suggests that the A and E symmetry
states have suffered interconversion processes due to collisions with H and/or
H2, or during their formation through the reaction of H3+ with H2CCO.Comment: Accepted for publication in A&A Letter
Coupling GIS and LCA for biodiversity assessments of land use
Geospatial details about land use are necessary to assess its potential impacts on biodiversity. Geographic information systems (GIS) are adept at modeling land use in a spatially explicit manner, while life cycle assessment (LCA) does not conventionally utilize geospatial information. This study presents a proof-of-concept approach for coupling GIS and LCA for biodiversity assessments of land use and applies it to a case study of ethanol production from agricultural crops in California.
GIS modeling was used to generate crop production scenarios for corn and sugar beets that met a range of ethanol production targets. The selected study area was a four-county region in the southern San Joaquin Valley of California, USA. The resulting land use maps were translated into maps of habitat types. From these maps, vectors were created that contained the total areas for each habitat type in the study region. These habitat compositions are treated as elementary input flows and used to calculate different biodiversity impact indicators in a second paper (Geyer et al., submitted).
Ten ethanol production scenarios were developed with GIS modeling. Current land use is added as baseline scenario. The parcels selected for corn and sugar beet production were generally in different locations. Moreover, corn and sugar beets are classified as different habitat types. Consequently, the scenarios differed in both the habitat types converted and in the habitat types expanded. Importantly, land use increased nonlinearly with increasing ethanol production targets. The GIS modeling for this study used spatial data that are commonly available in most developed countries and only required functions that are provided in virtually any commercial or open-source GIS software package.
This study has demonstrated that GIS-based inventory modeling of land use allows important refinements in LCA theory and practice. Using GIS, land use can be modeled as a geospatial and nonlinear function of output. For each spatially explicit process, land use can be expressed within the conventional structure of LCA methodology as a set of elementary input flows of habitat types
Systematic Conservation Planning in the Face of Climate Change: Bet-Hedging on the Columbia Plateau
Systematic conservation planning efforts typically focus on protecting current patterns of biodiversity. Climate change is poised to shift species distributions, reshuffle communities, and alter ecosystem functioning. In such a dynamic environment, lands selected to protect today's biodiversity may fail to do so in the future. One proposed approach to designing reserve networks that are robust to climate change involves protecting the diversity of abiotic conditions that in part determine species distributions and ecological processes. A set of abiotically diverse areas will likely support a diversity of ecological systems both today and into the future, although those two sets of systems might be dramatically different. Here, we demonstrate a conservation planning approach based on representing unique combinations of abiotic factors. We prioritize sites that represent the diversity of soils, topographies, and current climates of the Columbia Plateau. We then compare these sites to sites prioritized to protect current biodiversity. This comparison highlights places that are important for protecting both today's biodiversity and the diversity of abiotic factors that will likely determine biodiversity patterns in the future. It also highlights places where a reserve network designed solely to protect today's biodiversity would fail to capture the diversity of abiotic conditions and where such a network could be augmented to be more robust to climate-change impacts
Win-Win for Wind and Wildlife: A Vision to Facilitate Sustainable Development
Wind energy offers the potential to reduce carbon emissions while increasing energy independence and bolstering economic development. However, wind energy has a larger land footprint per Gigawatt (GW) than most other forms of energy production, making appropriate siting and mitigation particularly important. Species that require large unfragmented habitats and those known to avoid vertical structures are particularly at risk from wind development. Developing energy on disturbed lands rather than placing new developments within large and intact habitats would reduce cumulative impacts to wildlife. The U.S. Department of Energy estimates that it will take 241 GW of terrestrial based wind development on approximately 5 million hectares to reach 20% electricity production for the U.S. by 2030. We estimate there are ∼7,700 GW of potential wind energy available across the U.S., with ∼3,500 GW on disturbed lands. In addition, a disturbance-focused development strategy would avert the development of ∼2.3 million hectares of undisturbed lands while generating the same amount of energy as development based solely on maximizing wind potential. Wind subsidies targeted at favoring low-impact developments and creating avoidance and mitigation requirements that raise the costs for projects impacting sensitive lands could improve public value for both wind energy and biodiversity conservation
Performance and Consistency of Indicator Groups in Two Biodiversity Hotspots
In a world limited by data availability and limited funds for conservation, scientists and practitioners must use indicator groups to define spatial conservation priorities. Several studies have evaluated the effectiveness of indicator groups, but still little is known about the consistency in performance of these groups in different regions, which would allow their a priori selection.We systematically examined the effectiveness and the consistency of nine indicator groups in representing mammal species in two top-ranked Biodiversity Hotspots (BH): the Brazilian Cerrado and the Atlantic Forest. To test for group effectiveness we first found the best sets of sites able to maximize the representation of each indicator group in the BH and then calculated the average representation of different target species by the indicator groups in the BH. We considered consistent indicator groups whose representation of target species was not statistically different between BH. We called effective those groups that outperformed the target-species representation achieved by random sets of species. Effective indicator groups required the selection of less than 2% of the BH area for representing target species. Restricted-range species were the most effective indicators for the representation of all mammal diversity as well as target species. It was also the only group with high consistency.We show that several indicator groups could be applied as shortcuts for representing mammal species in the Cerrado and the Atlantic Forest to develop conservation plans, however, only restricted-range species consistently held as the most effective indicator group for such a task. This group is of particular importance in conservation planning as it captures high diversity of endemic and endangered species
Improving spatial prioritisation for remote marine regions: optimising biodiversity conservation and sustainable development trade-offs
Creating large conservation zones in remote areas, with less intense stakeholder overlap and limited environmental information, requires periodic review to ensure zonation mitigates primary threats and fill gaps in representation, while achieving conservation targets. Follow-up reviews can utilise improved methods and data, potentially identifying new planning options yielding a desirable balance between stakeholder interests. This research explored a marine zoning system in north-west Australia–abiodiverse area with poorly documented biota. Although remote, it is economically significant (i.e. petroleum extraction and fishing). Stakeholder engagement was used to source the best available biodiversity and socio-economic data and advanced spatial analyses produced 765 high resolution data layers, including 674 species distributions representing 119 families. Gap analysis revealed the current proposed zoning system as inadequate, with 98.2% of species below the Convention on Biological Diversity 10% representation targets. A systematic conservation planning algorithm Maxan provided zoning options to meet representation targets while balancing this with industry interests. Resulting scenarios revealed that conservation targets could be met with minimal impacts on petroleum and fishing industries, with estimated losses of 4.9% and 7.2% respectively. The approach addressed important knowledge gaps and provided a powerful and transparent method to reconcile industry interests with marine conservation
- …