3,297 research outputs found
Latency reversal and viral clearance to cure HIV-1
Research toward a cure for human immunodeficiency virus type 1 (HIV-1) infection has joined prevention and treatment efforts in the global public health agenda. A major approach to HIV eradication envisions antiretroviral suppression, paired with targeted therapies to enforce the expression of viral antigen from quiescent HIV-1 genomes, and immunotherapies to clear latent infection. These strategies are targeted to lead to viral eradication—a cure for AIDS. Paired testing of latency reversal and clearance strategies has begun, but additional obstacles to HIV eradication may emerge. Nevertheless, there is reason for optimism that advances in long-acting antiretroviral therapy and HIV prevention strategies will contribute to efforts in HIV cure research and that the implementation of these efforts will synergize to markedly blunt the effect of the HIV pandemic on society
Contemplative Science: An Insider's Prospectus
This chapter describes the potential far‐reaching consequences of contemplative higher education for the fields of science and medicine
In-flight radiometric calibration of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
A reflectance-based method was used to provide an analysis of the in-flight radiometric performance of AVIRIS. Field spectral reflectance measurements of the surface and extinction measurements of the atmosphere using solar radiation were used as input to atmospheric radiative transfer calculations. Five separate codes were used in the analysis. Four include multiple scattering, and the computed radiances from these for flight conditions were in good agreement. Code-generated radiances were compared with AVIRIS-predicted radiances based on two laboratory calibrations (pre- and post-season of flight) for a uniform highly reflecting natural dry lake target. For one spectrometer (C), the pre- and post-season calibration factors were found to give identical results, and to be in agreement with the atmospheric models that include multiple scattering. This positive result validates the field and laboratory calibration technique. Results for the other spectrometers (A, B and D) were widely at variance with the models no matter which calibration factors were used. Potential causes of these discrepancies are discussed
Spatio-temporal patterns in a mechanical model for mesenchymal morphogenesis
We present an in-depth study of spatio-temporal patterns in a simplified version of a mechanical model for pattern formation in mesenchymal morphogenesis. We briefly motivate the derivation of the model and show how to choose realistic boundary conditions to make the system well-posed. We firstly consider one-dimensional patterns and carry out a nonlinear perturbation analysis for the case where the uniform steady state is linearly unstable to a single mode. In two-dimensions, we show that if the displacement field in the model is represented as a sum of orthogonal parts, then the model can be decomposed into two sub-models, only one of which is capable of generating pattern. We thus focus on this particular sub-model. We present a nonlinear analysis of spatio-temporal patterns exhibited by the sub-model on a square domain and discuss mode interaction. Our analysis shows that when a two-dimensional mode number admits two or more degenerate mode pairs, the solution of the full nonlinear system of partial differential equations is a mixed mode solution in which all the degenerate mode pairs are represented in a frequency locked oscillation
Optical Clocks in Space
The performance of optical clocks has strongly progressed in recent years,
and accuracies and instabilities of 1 part in 10^18 are expected in the near
future. The operation of optical clocks in space provides new scientific and
technological opportunities. In particular, an earth-orbiting satellite
containing an ensemble of optical clocks would allow a precision measurement of
the gravitational redshift, navigation with improved precision, mapping of the
earth's gravitational potential by relativistic geodesy, and comparisons
between ground clocks.Comment: Proc. III International Conference on Particle and Fundamental
Physics in Space (SpacePart06), Beijing 19 - 21 April 2006, to appear in
Nucl. Phys.
Electric quadrupole moment of the state in : A relativistic coupled-cluster analysis
The electric quadrupole moment for the state of
, has been calculated using the relativistic
coupled-cluster method. Earlier a similar calculation was performed for the 4d
state of which is the most accurate
determination to date {[}PRL, \textbf{96}, 193001 (2006)]. The present
calculation of the electric quadrupole moment of
yielded a value where the experimental value is
; is the Bohr radius and the elementary charge.
We discuss in this paper our results in detail for and
highlight the dominant correlation effects present. We have presented the
effect of inner core excitations and their contribution to the electric
quadrupole moment, which is a property sensitive to regions away from the
nucleus.Comment: 5 pages, 1 figure. Accepted in Phys.Rev.
Carnosine uptake in rat choroid plexus primary cell cultures and choroid plexus whole tissue from PEPT2 null mice
PEPT2 is functionally active and localized to the apical membrane of rat choroid plexus epithelial cells. However, little is known about the transport mechanisms of endogenous neuropeptides in choroid plexus, and the role of PEPT2 in this process. In the present study, we examined the uptake kinetics of carnosine in rat choroid plexus primary cell cultures and choroid plexus whole tissue from wild-type (PEPT2 +/+ ) and null (PEPT2 –/– ) mice. Our results indicate that carnosine is preferentially taken up from the apical as opposed to basolateral membrane of cell monolayers, and that basolateral efflux in limited. Transepithelial flux of carnosine was not distinguishable from that of paracellular diffusion. The apical uptake of carnosine was characterized by a high affinity ( K m = 34 μ m ), low capacity ( V max = 73 pmol/mg protein/min) process, consistent with that of PEPT2. The non-saturable component was small ( K d = 0.063 μL/mg protein/min) and, under linear conditions, was only 3% of the total uptake. Studies in transgenic mice clearly demonstrated that PEPT2 was responsible for over 90% of carnosine's uptake in choroid plexus whole tissue. These findings elucidate the unique role of PEPT2 in regulating neuropeptide homeostasis at the blood–cerebrospinal fluid interface.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65858/1/j.1471-4159.2004.02333.x.pd
Genomic Organization, Splice Variants and Expression of CGMl, a CD66-related Member of the Carcinoembryonic Antigen Gene Family
The tumor marker carcinoembryonic antigen (CEA) belongs to a family of proteins which are composed of one immunogiobulin variable domain and a varying number of immunoglobulin constant-like domains. Most of the membrane-bound members, which are anchored either by a glycosylphosphatidylinositol moiety or a transmembrane domain, have been shown to convey cell adhesion in vitro. Here we describe two splice variants of CGMI. a transmembrane member of the CEA family without immunoglobulin constant.like domains. CGM1a and CGM1c contain cytopiasmic domains of 71 and 31 amino acids, respectively, The cytoplasmic region of CGM1a is encoded by four exons (Cyt1-Cyt4). Differential splicing of the Cyt1 exon (53 bp)..
The role of social networks in students’ learning experiences
The aim of this research is to investigate the role of social networks in computer science education. The Internet shows great potential for enhancing collaboration between people and the role of social software has become increasingly relevant in recent years. This research focuses on analyzing the role that social networks play in students’ learning experiences. The construction of students’ social networks, the evolution of these networks, and their effects on the students’ learning experience in a university environment are examined
- …