44 research outputs found

    Chronic wasting disease prions in mule deer interdigital glands

    Get PDF
    Chronic wasting disease (CWD) is a geographically expanding, fatal neurodegenerative disease in cervids. The disease can be transmitted directly (animal-animal) or indirectly via infectious prions shed into the environment. The precise mechanisms of indirect CWD transmission are unclear but known sources of the infectious prions that contaminate the environment include saliva, urine and feces. We have previously identified PrPC expression in deer interdigital glands, sac-like exocrine structures located between the digits of the hooves. In this study, we assayed for CWD prions within the interdigital glands of CWD infected deer to determine if they could serve as a source of prion shedding and potentially contribute to CWD transmission. Immunohistochemical analysis of interdigital glands from a CWD-infected female mule deer identified disease-associated PrPCWD within clusters of infiltrating leukocytes adjacent to sudoriferous and sebaceous glands, and within the acrosyringeal epidermis of a sudoriferous gland tubule. Proteinase K-resistant PrPCWD material was amplified by serial protein misfolding cyclic amplification (sPMCA) from soil retrieved from between the hoof digits of a clinically affected mule deer. Blinded testing of interdigital glands from 11 mule deer by real-time quake-induced conversion (RT-QuIC) accurately identified CWD-infected animals. The data described suggests that interdigital glands may play a role in the dissemination of CWD prions into the environment, warranting future investigation

    Empirical Estimation of R0 for Unknown Transmission Functions: The Case of Chronic Wasting Disease in Alberta.

    No full text
    We consider the problem of estimating the basic reproduction number R0 from data on prevalence dynamics at the beginning of a disease outbreak. We derive discrete and continuous time models, some coefficients of which are to be fitted from data. We show that prevalence of the disease is sufficient to determine R0. We apply this method to chronic wasting disease spread in Alberta determining a range of possible R0 and their sensitivity to the probability of deer annual survival

    Chronic Wasting Disease: Transmission Mechanisms and the Possibility of Harvest Management.

    No full text
    We develop a model of CWD management by nonselective deer harvest, currently the most feasible approach available for managing CWD in wild populations. We use the model to explore the effects of 6 common harvest strategies on disease prevalence and to identify potential optimal harvest policies for reducing disease prevalence without population collapse. The model includes 4 deer categories (juveniles, adult females, younger adult males, older adult males) that may be harvested at different rates, a food-based carrying capacity, which influences juvenile survival but not adult reproduction or survival, and seasonal force of infection terms for each deer category under differing frequency-dependent transmission dynamics resulting from environmental and direct contact mechanisms. Numerical experiments show that the interval of transmission coefficients β where the disease can be controlled is generally narrow and efficiency of a harvest policy to reduce disease prevalence depends crucially on the details of the disease transmission mechanism, in particular on the intensity of disease transmission to juveniles and the potential differences in the behavior of older and younger males that influence contact rates. Optimal harvest policy to minimize disease prevalence for each of the assumed transmission mechanisms is shown to depend on harvest intensity. Across mechanisms, a harvest that focuses on antlered deer, without distinguishing between age classes reduces disease prevalence most consistently, whereas distinguishing between young and older antlered deer produces higher uncertainty in the harvest effects on disease prevalence. Our results show that, despite uncertainties, a modelling approach can determine classes of harvest strategy that are most likely to be effective in combatting CWD

    Data from: Association mapping of genetic risk factors for chronic wasting disease in wild deer

    Get PDF
    Chronic wasting disease (CWD) is a fatal transmissible spongiform encephalopathy affecting North American cervids. We assessed the feasibility of association mapping CWD genetic risk factors in wild white-tailed deer (Odocoileus virginianus) and mule deer (Odocoileus hemionus) using a panel of bovine microsatellite markers from three homologous deer linkage groups predicted to contain candidate genes. These markers had a low cross-species amplification rate (27.9%) and showed weak linkage disequilibrium (<1 cM). Markers near the prion protein and the neurofibromin 1 (NF1) genes were suggestively associated with CWD status in white-tailed deer (P = 0.006) and mule deer (P = 0.02), respectively. This is the first time an association between the NF1 region and CWD has been reported

    Genetic interrelationships of North American populations of giant liver fluke Fascioloides magna

    No full text
    Abstract Background Population structure and genetic interrelationships of giant liver fluke Fascioloides magna from all enzootic North American regions were revealed in close relation with geographical distribution of its obligate definitive cervid hosts for the first time. Methods Variable fragments of the mitochondrial cytochrome c oxidase subunit I (cox1; 384 bp) and nicotinamide dehydrogenase subunit I (nad1; 405 bp) were applied as a tool. The concatenated data set of both cox1 and nad1 sequences (789 bp) contained 222 sequences that resulted in 50 haplotypes. Genetic data were analysed using Bayesian Inference (BI), Maximum Likelihood (ML) and Analysis of Molecular Variance (AMOVA). Results Phylogenetic analysis revealed two major clades of F. magna, which separated the parasite into western and eastern populations. Western populations included samples from Rocky Mountain trench (Alberta) and northern Pacific coast (British Columbia and Oregon), whereas, the eastern populations were represented by individuals from the Great Lakes region (Minnesota), Gulf coast, lower Mississippi, and southern Atlantic seaboard region (Mississippi, Louisiana, South Carolina, Georgia, Florida) and northern Quebec and Labrador. Haplotype network and results of AMOVA analysis confirmed explicit genetic separation of western and eastern populations of the parasite that suggests long term historical isolation of F. magna populations. Conclusion The genetic makeup of the parasite’s populations correlates with data on historical distribution of its hosts. Based on the mitochondrial data there are no signs of host specificity of F. magna adults towards any definitive host species; the detected haplotypes of giant liver fluke are shared amongst several host species in adjacent populations

    Ratio of juvenile to adult disease prevalence (solid line) and population disease prevalence (dotted line) corresponding to constrained optimal harvest preferences in Fig 2 and fawn:doe ratios in Fig 3.

    No full text
    <p>For TM3 and TM4 disease transmission to juveniles is less and optimal harvest regimes result in a higher proportion of juveniles in the population.</p

    Buck:doe and fawn:doe ratios corresponding to constrained optimal harvest preferences in Fig 2.

    No full text
    <p>Buck:doe and fawn:doe ratios corresponding to constrained optimal harvest preferences in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0151039#pone.0151039.g002" target="_blank">Fig 2</a>.</p
    corecore