10 research outputs found

    Fast computation of time-dependent acoustic fields

    Get PDF

    The influence of a pressure wavepacket's characteristics on its acoustic radiation

    Get PDF
    Noise generation by flows is modeled using a pressure wavepacket to excite the acoustic medium via a boundary condition of the homogeneous wave equation. The pressure wavepacket is a generic representation of the flow unsteadiness, and is characterized by a space envelope of pseudo-Gaussian shape and by a subsonic phase velocity. The space modulation yields energy in the supersonic range of the wavenumber spectrum, which is directly responsible for sound radiation and directivity. The influence of the envelope's shape on the noise emission is studied analytically and numerically, using an acoustic efficiency defined as the ratio of the acoustic power generated by the wavepacket to that involved in the modeled flow. The methodology is also extended to the case of acoustic propagation in a uniformly moving medium, broadening possibilities toward practical flows where organized structures play a major role, such as co-flow around cruising jet, cavity, and turbulent boundary layer flows. The results of the acoustic efficiency show significant sound pressure levels, especially for asymmetric wavepackets radiating in a moving medium

    A diagnostic tool for jet noise using a line-source approach and implicit large-Eddy simulation data

    Get PDF
    In this work, we propose a cost-effective approach allowing one to evaluate the acoustic field generated by a turbulent jet. A turbulence-resolving simulation of an incompressible turbulent round jet is performed for a Reynolds number equal to thanks to the massively parallel high-order flow solver Incompact3d. Then a formulation of Lighthill's solution is derived, using an azimuthal Fourier series expansion and a compactness assumption in the radial direction. The formulation then reduces to a line source theory, which is cost-effective to implement and evaluate. The accuracy of the radial compactness assumption, however, depends on the Strouhal number, the Mach number, the observation elevation angle, and the radial extent of the source. Preliminary results are showing that the proposed method approaches the experimental overall sound pressure level by less than 4 dB for aft emission angles below 50°

    A Morphological Approach to the Aeroacoustic Fields of a Flute with Density Gradient Correlation

    No full text

    Fast computation of time-dependent acoustic fields

    No full text

    High Accuracy Volume Flow Rate Measurement Using Vortex Counting

    Get PDF
    A prototype device for measuring the volumetric flow-rate by counting vortices has been designed and realized. It consists of a square-section pipe in which a two-dimensional bluff body and a strain gauge force sensor are placed. These two elements are separated from each other, unlike the majority of vortex apparatus currently available. The principle is based on the generation of a separated wake behind the bluff body. The volumetric flow-rate measurement is done by counting vortices using a flat plate placed in the wake and attached to the beam sensor. By optimizing the geometrical arrangement, the search for a significant signal has shown that it was possible to get a quasi-periodic signal, within a good range of flow rates so that its performances are well deduced. The repeatability of the value of the volume of fluid passed for every vortex shed is tested for a given flow and then the accuracy of the measuring device is determined. This quantity is the constant of the device and is called the digital volume (Vp). It has the dimension of a volume and varies with the confinement of the flow and with the Reynolds number. Therefore, a dimensionless quantity is introduced, the reduced digital volume (Vr) that takes into account the average speed in the contracted section downstream of the bluff body. The reduced digital volume is found to be independent of the confinement in a significant range of Reynolds numbers, which gives the device a good accuracy. Keywords

    Numerical study of Mach number and thermal effects on sound radiation by a mixing layer

    No full text
    Mach number and thermal effects on the mechanisms of sound generation and propagation are investigated in spatially evolving two-dimensional isothermal and non-isothermal mixing layers at Mach number ranging from 0.2 to 0.4 and Reynolds number of 400. A characteristic-based formulation is used to solve by direct numerical simulation the compressible Navier-Stokes equations using high-order schemes. The radiated sound is directly computed in a domain that includes both the near-field aerodynamic source region and the far-field sound propagation. In the isothermal mixing layer, Mach number effects may be identified in the acoustic field through an increase of the directivity associated with the non-compactness of the acoustic sources. Baroclinic instability effects may be recognized in the non-isothermal mixing layer, as the presence of counter-rotating vorticity layers, the resulting acoustic sources being found less efficient. An analysis based on the acoustic analogy shows that the directivity increase with the Mach number can be associated with the emergence of density fluctuations of weak amplitude but very efficient in terms of noise generation at shallow angle. This influence, combined with convection and refraction effects, is found to shape the acoustic wavefront pattern depending on the Mach number.CAPES (Brazil)CAPES (Brazil)GENCI (Grand Equipement National de Calcul Intensif)GENCI (Grand Equipement National de Calcul Intensif
    corecore