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In this work, we propose a cost-effective approach allowing one to evaluate the acoustic 
field generated by a turbulent jet. A turbulence-resolving simulation of an incompressible 
turbulent round jet is performed for a Reynolds number equal to 460, 000 thanks to the 
massively parallel high-order flow solver Incompact3d. Then a formulation of Lighthill’s 
solution is derived, using an azimuthal Fourier series expansion and a compactness 
assumption in the radial direction. The formulation then reduces to a line source theory, 
which is cost-effective to implement and evaluate. The accuracy of the radial compactness 
assumption, however, depends on the Strouhal number, the Mach number, the observation 
elevation angle, and the radial extent of the source. Preliminary results are showing that 
the proposed method approaches the experimental overall sound pressure level by less 
than 4 dB for aft emission angles below 50◦.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The overall goal of the present study is to develop and validate a cost-effective hybrid jet noise prediction tool that could 
potentially offer a competitive trade-off between the accuracy of the experiments (in the same operating conditions) and 
the computational cost in terms of wall clock time and data storage. Such a tool could be critical for the efficient design of 
quieter turbulent jets and for quickly evaluating and comparing different noise mitigation strategies. For instance, to reduce 
the sound generated by aircraft engines, Boeing, General Electric, and NASA developed several years ago serrated edges 
called chevrons for engine exhaust nozzles [1,2]. The chevrons effectively reduce jet noise by controlling the way the air 
mixes after passing through and around the engine. However, the large number of parameters affecting the performance 
of such a control solution makes their development, testing and optimisation a very complicated task, with potentially 
numerous high-cost and time-consuming trial-and-error iterations. For this reason, cost-effective diagnostic tools are needed 
in order to quantify how the acoustic field is modified when a control solution is used, but more importantly to adjust and 
compare different parameters of the control solution in an effective fashion. The expectation for such a diagnostic tool may 
include quantitative and qualitative criteria, such as a correct estimation of the global sound levels without any empirical 
constant, and an ability to reveal significant changes in the directivity pattern and frequency content.
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Coupling compressible, large-eddy simulations (LES) with a wave extrapolation from a Kirchhoff surface is currently the 
most adopted strategy to quantify noise levels generated by turbulent jets. However, because the acoustic predictions are 
often carried out at the same time as the simulation, the potential for computational cost reduction is quite small. The 
very high cost of this direct approach, very successful to unlock the sound generation mechanisms for turbulent jets, is 
still a limiting factor to be used as a cost-effective diagnostic tool. Recent works have provided powerful insight into the 
ingredients of jet noise generation that might be helpful when trying to design a diagnostic tool. From the flow dynamic 
point of view, the boundary layer characteristics inside the nozzle [3] and the hydrodynamic instabilities at the initial stage 
of the shear layer have been identified as driving phenomena in the early stages of the development of turbulent jets [4,5]. 
From an acoustic point of view, the azimuthal mode decomposition of the acoustic field reveals that most of the energy is 
contained in the couple of first modes [6]. The near-field properties of those modes has been characterised by [7] through 
the streamwise evolution of instability waves. The higher modes are formally less efficient to radiate to the far-field. Another 
important feature of the acoustic field is its directivity, which needs an extended source to be reproduced [8], meaning that 
phase effects along the jet axis must be accounted for by any modelling. As for phase effects in the third direction, the 
transverse one, the lower the frequency and the radiation angle are, the weaker their influence is.

Taking into account all these considerations, a hybrid methodology is developed in the present study in order to evaluate 
sound levels generated by turbulent jets. The first step generates source data by an optimised turbulence-resolving simula-
tion using an incompressible, massively parallel, high-order solver. The nozzle is included in the computational domain for a 
more realistic representation of the flow physics and an implicit large-eddy simulation (ILES) strategy is used to reach high 
Reynolds numbers while resolving a wide range of turbulence scales. Such a simulation can be performed in a few hours 
on a few thousands cores, contributing to an excellent balance between wall-clock time and accuracy. The second step is an 
azimuthally reduced, semi-compact formulation of Lighthill’s solution: all effects are included in the axial direction, while 
only the five first azimuthal modes of the source quantity are propagated and a first-order compactness assumption is made 
in the radial direction. This leads to a line-source approach, for which the storage need and computational time are almost 
negligible with respect to the flow simulation.

The paper is organised as follows: in section 2, the numerical strategy for the flow simulation is described, and the ve-
locity field is compared with experimental data [6,9,10] performed at the same Reynolds number. The acoustic methodology 
is presented in section 3, while the predicted acoustic field is validated in section 4 versus the experimental acoustic mea-
surements [11] generated in the same facility as for the velocity field data. The range of validity of the radial compactness 
assumption is thus studied in terms of aft radiation angle and frequency. The full derivation of the present method as well 
as its limitations are presented in the appendix.

2. Flow simulation

The main goal of the flow simulation reported in this section is to provide the velocity field data necessary for the 
acoustic study.

2.1. Numerical methods

The governing equations are the forced incompressible Navier–Stokes equations

∂u

∂t
= −∇p − 1

2
[∇ (u ⊗ u) + (u · ∇)u] + ν∇2u + f (1)

∇·u = 0 (2)

where p(x, t) is the pressure field (for a fluid with a constant density) and u(x, t) the velocity field. Note that convective 
terms are written in the skew-symmetric form as it allows the reduction of aliasing errors while remaining energy conserv-
ing [12]. In these forced Navier–Stokes equations, the forcing field f(x, t) is used through a customized immersed boundary 
method (IBM) allowing us to include the nozzle inside the computational domain. Following the work of [13], the present 
methodology is based on an alternating direction forcing strategy for which a no-slip boundary condition is imposed at 
the wall of the nozzle in each spatial direction, while an artificial flow is introduced inside the nozzle to avoid any loss of 
continuity on the velocity field. From a practical point of view, this artificial expansion of the flow inside the nozzle, based 
on Lagrange polynomials, is performed in the direction where a spatial derivative is evaluated. As a consequence, a different 
expansion is generated, depending on the spatial direction of the computed derivatives. When combined with low-order 
schemes, a loss of continuity would only have a minor impact on the solution. However, when combined with high-order 
schemes, it can generate spurious oscillations on the derivatives at the wall of the nozzle. More details about this technique 
can be found in [13].

The governing equations are solved using the flow solver Incompact3d based on a Cartesian mesh, finite-difference 
sixth-order schemes for the spatial discretization and a conventional fourth-order Adams–Bashforth scheme for the time 
advancement. To treat the incompressibility condition, a fractional step method requires to deal with a Poisson equation, 
fully solved in spectral space via the use of relevant 3D Fast Fourier transforms. Combined with the concept of modified 
wave number [14], this direct (i.e. non-iterative) technique allows the implementation of the divergence-free condition up to 
machine accuracy. A partially staggered mesh is used where the pressure mesh is shifted by a half-mesh from the velocity 
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Fig. 1. Schematic diagram of the computational domain.

mesh in each direction. This type of mesh organization leads to more physically realistic pressure fields with no spurious 
oscillations. More details about the numerical methods used in Incompact3d code can be found in [15].

The high level of parallelisation in Incompact3d is achieved thanks to a highly scalable 2D domain decomposition 
library and a distributed Fast Fourier Transform (FFT) interface [16]. The 3D computational domain is divided in pencils with 
three different options referred as X-pencil, Y -pencil, and Z -pencil. The derivatives and interpolations in the x-direction 
(y-direction, z-direction) are performed in X-pencil (Y -pencil, Z -pencil), respectively. The 3D FFTs required by the Poisson 
solver are also broken down as series of 1D FFTs computed in one direction at a time. Incompact3d can scale well up 
to one million MPI-processes for simulations with several billion mesh nodes [16]. It has been used recently for a variety 
of projects1 ranging from fractal-generated turbulence [17], gravity currents [18], boundary layers [19], impinging jets on a 
heated plate [20], active flow control of a turbulent jet [13,21], and simulations of plasma actuators [22].

2.2. Flow configuration

In this study, we consider a turbulent main jet at the exit of a round nozzle of internal diameter D . For better modelling 
of the instabilities at the exit of the nozzle, the latter is included inside the computational domain Lx × L y × Lz = 30 D ×
8 D × 8 D , as shown in Fig. 1. It is discretized on a Cartesian mesh of nx × ny × nz = 1281 × 513 × 513 mesh nodes and split 
into 2,048 computational cores. The Reynolds number is Re = Uc D/ν = 460, 000 where Uc is the velocity of the jet on the 
centerline at the exit of the nozzle. The coordinate system R is orthonormal with coordinate x in the streamwise direction 
and coordinates (y, z) in the transverse plane such that y = z = 0 on the centerline. The origin of R is located just at the 
exit of the nozzle on the centerline of the main jet, at a distance 6D from the upstream side of the computational domain. 
For the initial inlet boundary condition at x = −6D , the diameter of the nozzle is 3D with a velocity profile inside the 
nozzle based on a mean profile U (r) = [1 − (2r/3D)64]Uc where r = √

y2 + z2 (corresponding to the radial coordinate). The 
first part of the nozzle is based on a constant diameter up to x = −3 D . Then the diameter is reduced to 1D from x = −3 D
to x = −2 D using the function −9.48 ((0.75 (x + 2.0))4 + (0.75 (x + 2))3) + 0.5 D to define the radius of the nozzle in the 
convergent part. The last part of the nozzle has a constant diameter D from x = −2 D to x = 0. Turbulent conditions inside 
the nozzle are triggered with a conventional recycling technique where the velocity profile at x = −4.5 D is used at the inlet, 
see [23] for more details. Note that no rescaling and no interpolation are necessary as the diameter of the nozzle is constant 
in the recycling region. The velocity around the nozzle is not zero with the imposition of a small co-flow of velocity equal 
to 4% Uc. This co-flow avoids dealing with a stagnant flow near the outlet, a situation that is very critical for any outflow 
boundary conditions in incompressible flows. In order to ensure the no-slip boundary condition for the outside wall of the 
nozzle, a laminar boundary profile is imposed with a thickness of about 9 meshes. The experimental nozzle boundary layer 
exit thickness is not known, as it is extremely difficult to measure. However, it was estimated to be approximately 0.08 D
[3]. For our simulation, the nozzle boundary layer exit thickness is approximately equal to 0.07 D , which is very close to the 
estimated experimental value.

At the end of the domain in the streamwise direction, the fringe method proposed by [24] is implemented as the 
popular convective open boundary condition is unsuitable [25]. This technique consists in the addition of a volume force F v

in the right-hand side of the Navier–Stokes equations with F v = λ(x)(uT − u), where uT is a target velocity field and λ(x) a 
modulation function allowing a local activation of the forcing in the region where λ(x) �= 0. Here, the corresponding fringe 
region is defined using λ(x) = cos2

[
(x − xexit) × π

6

]
, for x ≥ xexit, where xexit is the x value at the exit of the regular domain, 

i.e. x = 27 D as seen in Fig. 1. This function is suitable due to the fact that the forcing is smoothly starting from zero (first 
derivative is also zero) at the exit of the regular domain and is increasing to 1 at the exit of the fringe zone. uT is assumed 
to be of Gaussian type, with (umax − ucf) × e(−r2/r2

g ) + ucf, where ucf is the velocity of the coflow and umax is the velocity on 
the centerline of the jet. The values of umax = 0.25 and rg = 1.4 are used for the targeted velocity at the end of the physical 
domain (at x = 30 D) as these values are matching a preliminary investigation with no fringe zone. The outflow boundary 

1 See http://www.incompact3d .com /impact .html for all the Incompact3d-based papers published recently.

http://www.incompact3d.com/impact.html
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condition (at x = 30 D) is then given by a standard 1D convective open boundary condition, with a convective velocity being 
equal to the exit velocity at each node.

For the lateral sides (y = ±L y/2 and z = ±Lz/2), modified Dirichlet boundary conditions are imposed, following a proce-
dure described in [26]. The idea is to allow the flow to enter the computational domain in order to mimic an entrainment 
mechanism. Note that, in the present study, the aspiration of fluid is marginal (less than 0.01 Uc), with no significant impact 
by comparison to more classic free-slip boundary conditions.

2.3. Implicit large-eddy simulation (ILES)

Recently, [27] and [28] suggested an original method to enable the introduction of a controlled numerical dissipation 
restricted to a selected range of small scales. This method is based on specific high-order finite-difference schemes for the 
computation of the second derivatives in the viscous term of the Navier–Stokes equations. The schemes are centered so that 
no upwind treatment is required contrary to the popular use of non-centered dissipative schemes for the computation of 
first derivative in the convective terms. The dissipation can be easily controlled through the coefficients of the scheme while 
preserving its formal accuracy. The set of coefficients provided by [28] is designed to mimic a subgrid-scale model for LES 
based on the concept of Spectral Vanishing Viscosity (SVV, see, for instance, [29,30]), at no extra computational cost. The 
coefficients used in the present study can be found in [20] and have allowed us to reach, at a reasonable computational 
cost, the same Reynolds number as the experimental database used in the present study for comparison [6,9,10].

2.4. Reference data

A massive dual-plane, time-resolved, stereoscopic particle-image velocimetry (PIV) experimental database has been gen-
erated recently at the “Bruit et Vent” jet-noise facility of the Pprime Institute, Poitiers, France [6,9,10]. The measurements 
were carried out at a Mach number equal to 0.4 in isothermal conditions. The nozzle diameter D was 0.05 m, giving 
a Reynolds number of 460, 000 equal to the one used in the present study. Acoustic data were also collected with a 
18-microphone azimuthal array, of radius r/D = 14.3, whose axial position is varied so as to map the sound field on a 
cylindrical surface, giving access to the overall sound pressure level (OASPL) and spectrum for the 10 first azimuthal modes 
in addition to that of the total radiation. The axial measurement range is −2.5 � x/D � 39, thus covering an aft angle range 
20◦ ≤ θo ≤ 105◦ with a constant increment of 5◦ . On account of the resulting differences in the distance Ro, between the 
nozzle exit and the microphones, a 1/Ro scaling is applied to the acoustic pressure in order to rescale the measurements to 
a fixed distance of Ro = 42 D , which corresponds to a maximum on the cylindrical surface, namely for θo = 20◦ . This scale 
is not fully justified for low frequencies; however, the conclusions of the present numerical study were found unchanged 
when the comparison with the experimental data was taken on the cylindrical array. The acoustic intensity is also scaled 
by M4 to account for changes in the dynamic head of the jet and to ease the comparison with simulations.

2.5. Incompressible ILES results

Fig. 2 is showing an instantaneous visualization of the flow just at the exit of the nozzle. As expected, it can be seen 
that the jet is fully turbulent, with a wide range of vortices. It seems that it is not possible to identify small-scale spurious 
numerical oscillations, which our simulations would have been unable to control. A short transitional period can be observed 
just at the exit of the nozzle followed by large-scale ring structures that are generated close to the nozzle. Those structures 
are quickly destroyed by small streamwise vortices due to the Kelvin–Helmholtz instability mechanism, and eventually the 
flow becomes gradually fully turbulent.

Fig. 3 shows a comparison of the streamwise velocity statistics from the experimental database and from the present 
simulation at various streamwise locations downstream of the nozzle exit, from x = 3 D to x = 8 D . For this figure, the data 
are averaged azimuthally to improve the statistical convergence. It can be seen that a reasonably good agreement is obtained 
between the experiment and the simulation for the streamwise evolution of the mean streamwise velocity and its associated 
fluctuating component. The small differences observed for the fluctuating component are attributed to the co-flow that could 
affect the entrainment process. Also, it has been shown recently that the nature of the boundary layer inside the nozzle is 
a crucial parameter allowing us to reproduce experimental data at high Reynolds numbers [3]. In this study, the authors 
used localized adaptive mesh refinement, synthetic turbulence, and wall modeling inside a convergent nozzle to ensure 
realistic turbulent boundary layer profiles inside the nozzle. The turbulent structures generated by our recycling technique 
may not be realistic enough for a correct reproduction of the levels of turbulence generated experimentally downstream 
of the nozzle exit. Finally, the present simulation is incompressible, whereas the experiments were performed at M = 0.4. 
Compressibility effects, which cannot be taken into account in the simulation, could affect the streamwise evolution of the 
jet. In the simulation, the length of the potential core is 5.3 D , in very good agreement with the experimental data, for 
which the potential core is estimated to be between 5 D and 5.5 D [9].

For completeness, streamwise velocity spectra on the jet centerline (left) and the jet lipline (right) at a distance of 2D 
after the nozzle exit are plotted in Fig. 4. It can be seen that the agreement between the experimental data of [9,10] and 
the present numerical data is quite good on the jet lipline, where a clear −5/3 spectra can be observed for a fairly large 
range of Strouhal numbers, with no distinctive peak. On the jet centerline, a major difference can be observed between the 
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Fig. 2. Instantaneous visualization of the flow downstream of the nozzle exit. Isocontour 10 Uc/D2 of enstrophy coloured by the streamwise velocity (dark 
blue corresponds to zero and red corresponds to 1).

Fig. 3. Profiles for the mean streamwise velocity and its associated fluctuating component for x/D = 3 to 8. Comparison between our ILES (blue lines) and 
the experimental data of [9,10] (black symbols).

experimental data and the present simulation. In particular, the location of the peak is different at low Strouhal numbers, 
being equal to 0.3 for the simulation and to 0.6 for the experiments. As explained in [9], the centerline spectrum is expected 
to be representative of the axisymmetric mode, which is the case for the experiments. However, it seems that for the 
simulation, the peak corresponds to the preferred jet column mode (St = 0.3), see [31,32]. This difference in the location of 
the peak is attributed to the recirculation mechanism used in the nozzle to trigger instabilities inside the boundary layer. 
By triggering instabilities at a frequency corresponding to the axisymmetric mode, it should be possible to shift to the right 
the peak observed on the streamwise velocity spectra on the jet centerline.

To conclude, even if the agreement with the experiments is not that great, the incompressible data can be used (as a 
first try) for the acoustic study in order to assess the feasibility of the cost-effective diagnostic tool.

3. Acoustic methodology

Using the velocity field from the simulation described above, the jet noise prediction consists of a line-source approach 
based on three steps. Starting from incompressible velocity fields, an analogy is needed to build the acoustic source. 
Lighthill’s theory of aerodynamic noise [33] is used here for its simplicity of formulation and implementation [34–38]. 
Secondly, following the ring model [39,40] the source field is decomposed into a Fourier series in the azimuthal direction, 
which is homogeneous. This is a very efficient way to compress the data [41] and the acoustic computation time, since 
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Fig. 4. Streamwise velocity spectra on the jet centerline (left) and the jet lipline (right) at a distance of 2D after the nozzle exit. Comparison between our 
ILES (black lines) and the experimental data of [6] (green lines). The orange lines correspond to a −5/3 slope.

experimental data show that for the round jet at the present regime (M = 0.4, Re = 460, 000), the first five modes return 
the overall sound pressure level (OASPL) with an error of less than 1 dB, and the SPL with an error less than 1 dB/St up 
to St = 2, for all aft angles. Thirdly, selective far-field and compactness assumptions are made, taking advantage of a distant 
observer and a limited radial extent of the source, while retaining the phase lag along the non-compact axial extent, which 
is at the origin of the axisymmetric superdirectivity of subsonic round jets. This third assumption allows us to conduct 
one more direction of the volume integral prior to the acoustic computation, which reduces the latter’s cost by one more 
dimension, turning it almost instantaneously with respect to the cost of the simulation.

The detailed derivation of the present line-source formulation [42,43] can be found in Appendix A. The most important 
formulae are given in the following section, before the numerical implementation is described.

3.1. Integral formulation

The far-field noise emitted by a radially compact, azimuthally decomposed source region is written, in the frequency 
domain considering only the first component of Lighthill’s tensor, as:

p′(Ro, θo,ϕo = 0,ω) ≈
+∞∑
m=1

Bm(Ro, θo,ω)

+∞ˆ

−∞
A 
 [t11(Zs,m,ω)] dZs

+ B0(Ro,ω)

+∞ˆ

−∞
A t11(Zs,0,ω)dZ s + B0′(Ro, θo,ω)

+∞ˆ

−∞
A t11(Zs,0′,ω)dZs (3)

where (Ro, θo, ϕo) is the observer position expressed in spherical coordinates centred on the jet axis at the exit of the 
nozzle, (Zs, Rs, ϕs) is the source position expressed in cylindrical coordinates (e.g., Zs ≡ x ≡ Ro cos θo), ω is the angular 
frequency, and 
 denotes the real part. Bm is a frequency-dependent mode directivity factor given by

Bm(Ro, θo,ω) = −im km+2 sinm θo

2mm! e−ikRo for m ≥ 1

B0(Ro,ω) = −k2

2
e−ikRo (4)

B0′(Ro, θo,ω) = k4 sin2 θo

8
e−ikRo

where k = ω/c0 is the wavenumber in the medium at rest. A is what remains from the Green function inside the source 
integral. It accounts for the geometrical decay to the observer and for the phase lag on the line-source and is given by

A(Ro, θo, Zs,ω) = (Ro cos θo − Zs)
2 e

−ik

(
Z 2

s

2Ro
− Zs cos θo

)

(
R2

o + Z 2
s − 2Ro Zs cos θo

)3/2
(5)

t11 is a radial integral of the mth azimuthal mode of the first component of the Lighthill tensor τ11 and is given by
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t11(Zs,m,ω) =
+∞ˆ

0

τ11(Zs, Rs,m,ω) Rm+1
s dRs (6)

for m ≥ 0, and

t11(Zs,0′,ω) =
+∞ˆ

0

τ11(Zs, Rs,0,ω) R3
s dRs (7)

All notations and conventions are explicitly introduced and explained in details in Appendix A. The integration, as well 
as the azimuthal mode extraction, are conducted prior to the acoustic computation, which is only based on a line-source 
quantity, radiating for several observers and frequencies. Since the integration and extraction commute with the Fourier 
transform, they can be conducted directly within the incompressible flow computation, thus drastically reducing the storage 
by four orders of magnitude with respect to 3D fields (if the number of mesh nodes is a few hundreds in the transverse 
directions y and z). However, as explained in section A.4 for the radial integration, this is accurate only as the quantity 
St M sin θo(Rs/D) goes to zero.

In the following, Eq. (3) is referred to as “formulation Z”, meaning that no compactness assumption is made in the axial 
source extent with respect to the distance from the observer. Nevertheless, if Zs � Ro, the radiation at low aft angles may 
be obtained using a reduction of A to

AC (Ro, θo, Zs,ω) = cos2 θo eikZs cos θo

Ro
(8)

Then, considering the sinm θo factor in Bm , the contribution of azimuthal modes m ≥ 1, as well as the one from 0′ , can be 
neglected at low θo, and the acoustic pressure may be obtained by the following simplified expression

p′(Ro, θo,ϕo = 0,ω) ∼
θo→0

−k2 e−ikRo cos2 θo

2Ro

+∞ˆ

−∞
eikZs cos θo t11(Zs,0,ω)dZ s (9)

which was derived by [6]. It exhibits that the acoustic field in a given direction θo at a given frequency ω = k c0 is deter-
mined by the amplitude of the wavenumber k cos θo in the axial wavenumber spectrum of the excitation at this frequency. 
Equation (9) is referred to as “formulation C” in the following. It means that a compactness assumption is made on the axial 
source extent to the 0th order in the directivity factor and to the first order in the phase factor. One of the contributions 
of the present study is to investigate how strong such assumptions are and how small θo should be for the error to be 
acceptable.

Note that expressions (3) and (9) are only valid in the observer’s plane ϕo = 0. It is achieved without loss of generality 
given the homogeneity of the acoustic field, and the azimuthal phase description can simply be recovered by multiplying 
each mode component by exp(imϕo).

3.2. Numerical implementation

As specified heretofore, only the first component T11 is considered in the present study. The contribution of the other 
components is weak, but could be included in the process with neither conceptual nor numerical more obstacles. Consis-
tently with the ILES, the incompressible, isothermal, inviscid form of the Lighthill source term is used, namely T11 = ρ0uxux . 
The first step to apply the present acoustic methodology is to extract the azimuthal modes of the Lighthill source term. The 
velocity field is first interpolated from the Cartesian mesh to a polar mesh (Rs, ϕs). In the radial direction, the mesh step 
is the same as the one used in the Cartesian mesh in the lateral directions. In the azimuthal direction, the mesh step is 
dynamically adjusted according to Rs with either square meshes, namely dϕs ≈ dRs/Rs , or with a number of mesh nodes 
in the azimuthal arc greater than 16 m, where m is the mode index. The smallest mesh step resulting from these two 
conditions is retained, so that the azimuthal variations of the field are accurately described. A third-order Lagrange inter-
polation procedure is applied with a four-point stencil in the lateral directions. Then, the azimuthal modes are computed 
using Eq. (24) and Simpson’s rule.

The integration in the radial direction (6) (as well as the subsequent one along the jet axis) is then done using Simp-
son’s rule too. Such interpolation and integration schemes are more appropriate than linear ones in the present context of 
ILES-based high-order schemes in order to reduce the discretization errors for the small scales. The line-source quantity is 
obtained from 640 velocity field snapshots with a signal length of 100D/Uc , that is, a sampling Strouhal number of 6.4 and 
a frequency resolution of 0.01D/Uc. Then the line-source data is transformed into the frequency domain using a standard 
Fast Fourier Transform routine and a Tukey window over 2.5% of the signal at each end. Finally, the truncation issue at the 
boundary of the line integral is fixed by a Gaussian weighting of the following form,
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Fig. 5. Radial evolution of azimuthal modes (rms fluctuation): a) Zs/D = 2, b) Zs/D = 6, c) Zs/D = 10, d) Zs/D = 14. The unit is ρ0 U 2
c .

w(Zs) = e
−

(
Zs − Z̄ s


Z

)4

(10)

where Z̄ s is the end of the weighting, set to 9.5 D and 0.2 D at the outflow and inflow, respectively, while 
Z is the 
pseudo-length, set to 7 D and 0.5 D , respectively. Around these values, no significant influence of those parameters was 
noticed. The fourth-order Gaussian is preferred to the classical second-order one for its better smoothness near unity [44].

The observer locations in the plane ϕo = 0 can be defined without any grid condition because they are totally indepen-
dent of each other, contrary to some formulations of Lighthill’s solution, transferring the space derivatives in the observer 
frame. Then, the same arc as in the experiment is used, with a better angular resolution enabling smoother plots.

In the present case, the line-source storage needs about 67 MB for five azimuthal modes (the storage of one component 
of the 3D, time-dependant velocity field requiring 1.5 TB, about 25, 000 times more), while the computation of expression 
(3) for about 20 observer points lasts a couple of seconds using an interpreted language on a standard desktop. Such a low 
storage and a low wall-clock time are very attractive features as far as a cost-efficient diagnostic tool is concerned. More-
over, robustness tests on the numerical parameters (distance from the observer, spectrum estimation, spatial windowing, 
quadrature formula, undersampling, etc.) can be conducted in a very comfortable way once the line-source distribution is 
known.

4. Acoustic results

In this section, the acoustic methodology presented above is applied using the velocity fields obtained by the ILES. Some 
visualisations during the source extraction process are first presented to check its suitability for the acoustic integral and to 
anticipate the behaviour of the latter. Then the radiated pressure field is compared to the experimental one.

4.1. Source field

The radial evolution of the five first azimuthal modes of the source quantity is plotted in Fig. 5 at four axial locations. 
Only the rms value of the modulus of the fluctuating part is considered. Note that the plot would be identical for m < 0
since, starting from real data, τ (−m) = τ (m)∗ , where ∗ denotes the complex conjugate, and τ (m = 0) is real. The spreading 
of the jet can be visualised, with a sharp maximum of fluctuation around Rs/D � 0.5 close to the nozzle exit and a widening 
when approaching the axis for downstream locations. The five modes exhibit nearly the same evolution, with a Gaussian 
decay (∼ e−R2

s ) followed by an exponential decay (∼ e−|Rs|). They also have roughly the same energy in the shear region, 
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Fig. 6. Line-source spatio-temporal distribution for the axisymmetric mode (m = 0). The levels range from −0.02 (blue) to 0.02 (magenta). The unit is 
ρ0 U 2

c D2. The thick, dashed, vertical line indicates the nozzle exit.

while on the axis or for high radii, the energy is decreasing for higher mode indexes. In the present context, the way the 
fluctuations are concentrated close to jet axis provides a first indication on the relevancy of the compactness assumption, 
driving the error made when taking the approximation of the Bessel function for small argument St M sin θo(Rs/D), allowing 
one to take it out from the radial integral (28). Also, the streamwise velocity for m ≥ 1 is theoretically expected to go 
to zero when approaching the centerline. Fig. 5 shows that the numerically extracted azimuthal modes satisfy well this 
necessary condition. Finally, given the low levels at high Rs , truncation effects due to the size of the computational box in 
the transverse directions are very unlikely.

The line-source distribution is mapped over the (Zs, t) plane in Fig. 6 for the axisymmetric mode (m = 0). Fine-grained 
evolution is noticed for 0 � Zs/D � 5, with a convection velocity of about 0.6 Uc. Further downstream, the time and length 
scales of the fluctuations are growing, while the amplitude is greater, and the convection velocity slows down to about 
0.35 Uc. The wavepacket formalism tells us that such subsonically convected waves are only able to radiate sound through 
the space and time modulation of their envelope. Indeed, the growth and decay rates of this envelope drive the amount of 
energy that will spill over the supersonic region of the axial wavenumber spectrum and will consequently be radiated to the 
far field [45–47]. Thus, the low-amplitude, fine-grained activity just downstream of the nozzle exit may be more efficient 
as a noise radiator than the high-amplitude, large-scale activity further downstream. Indeed, the growth of the large-scale 
activity occurs over a larger extent, with no real time modulation. Furthermore, its lower convection velocity pushes its 
energy peak away from the supersonic wavenumbers. On the contrary, the small-scale activity exhibits an alternation of 
bursts and relative quiet areas, as can be seen by following a Zs = 2D vertical line. Darker (high-level) spots are encountered 
around t = [18; 35; 45; 55; 68; 90]D/Uc . Due to the reduced size of the time series, only few events are happening, with 
intermittency, meaning that their acoustic imprint will not be optimally described in a spectrum estimation. This is one 
important limitation of the present study, yet it could be easily dealt with by extending the collection time of the data.

4.2. Radiated field

This line-source distribution is then used as the input for (3), and the acoustic pressure signal at the observer location 
is obtained on an arc at Ro = 42 D . The resulting OASPL is plotted in Fig. 7 and compared with the experimental data. 
Regarding the latter, it can be checked in Fig. 7a that only the five first azimuthal modes are needed to describe the OASPL 
directivity with an error less than 1 dB, as mentioned in the introduction of section 3. Fig. 7a shows the main result of 
the paper: the present line-source formulation approaches the experimental OASPL by less than 4 dB for aft angles below 
50◦ . This is a noteworthy quantitative agreement, considering the important assumptions of the present formulation and 
its limitations (radial compactness, rather short collection time for the data and overprediction of the velocity fluctuations 
in the first stages of the jet development). An accurate prediction of the OASPL at higher aft angles would require to 
include other Tij , in particular T22, T23, T33, and to waive the compactness assumption in the radial direction. Also, the 
incompressible solver is unable to account for the refraction of the acoustic waves in the near-field, which can partly 
explain the slight overprediction of the OASPL at low aft angles.

Another valuable result from Fig. 7a is that the predicted directivity of the axisymmetric mode is in excellent quali-
tative agreement with the measured one. Moreover, the inclusion of the high-order formula (5) (formulation Z) for the 
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Fig. 7. Directivity. Left: total noise and axisymmetric mode; right: contributions of the five first azimutal Fourier modes. Ro = 42D .

Fig. 8. Power spectral density for a) θ0 = 20◦ , b) θ0 = 40◦ . Ro = 42 D . The greyed region (St ≥ 1) corresponds to frequencies for which the line-source 
formulation is not valid.

geometrical decay to the observer and for the phase lag on the line-source is justified, since the more compact formula (8)
(formulation C) leads to an underprediction of the energy fall in the moderate aft angles 20◦ ≤ θo ≤ 50◦ . Both formulations 
overestimate the OASPL of the axisymmetric mode by a 4-dB offset at low angles. This may be attributed to an amplification 
of the errors at high frequencies, as discussed at the end of this Section.

The directivity of the first azimuthal modes is also qualitatively well described by the present method at low aft angles, 
as shown in Fig. 7b. Two asymptotic behaviours are directly linked to the line-source formalism: for the first component 
of Lighthill’s tensor (T11), a cos2 θo factor, coming from A, weights all the azimuthal modes, leading to the cancellation of 
sound as θo approaches 90◦ . On the other hand, for m �= 0, Bm introduces a sinm θo factor that vanishes the sound for small 
aft angles. This numerically predicted directivity agrees well with the experimental data for 20◦ ≤ θo ≤ 60◦ for the four first 
modes. The radiation for θo approaching 90◦ may be attributed to the contribution of other Tij . Such results suggest that 
the azimuthal mode decomposition has a physical meaning in the acoustic radiation processes of a turbulent jet. Including 
this decomposition into the present approach increases a priori its qualitative accuracy.

From a quantitative point of view, the OASPL of mode m = 1 is predicted with only a 1-dB error for 20◦ ≤ θo ≤ 55◦ . 
For the other modes, the energy hierarchy observed in the experiment is well recovered, but the OASPL needs a significant 
(from +4 dB to −10 dB) constant correction to match the experimental data. The km+2 factor brought by Bm may explain 
those errors, since it reinforces strongly the high frequencies, which are, at the same time, the most concerned by the error 
made in assuming the quantity St M sin θo(Rs/D) as small, as illustrated in Fig. 9.

Regarding the frequency content of the radiated noise, the power spectral density (PSD) of the pressure field is plotted 
in Figs. 8a and 8b for θ = 20◦ and θ = 40◦ , respectively. For both observers, the SPL below St = 1 is consistent with the 
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previous observations: the error is of the same level as that for the OASPL. For very low frequencies, an underprediction is 
noticed, which may be attributed to the reduced size of the collection time for the present data. The increase of the SPL 
with frequencies corresponding to St ≤ 1 can be attributed to two reasons. First, the acoustic pressure field is weighted 
by the factor k2 (see Eq. (4)), inherited from the derivation of the Green function (see Eq. (17)). This affects the output 
of the acoustic model through errors in the numerical filtering of LES data brought by the Green function, which is fully
analytical, would correctly cancel non propagating components of the source quantity. This is enhanced for higher-order 
modes, with extra powers of k inherited from the Bessel functions approximation for low arguments. Second, errors in the 
acoustic spectra could result from errors in the simulated velocity field. To determine whether such an error leads to over-
or underestimation of the SPL would require unaffordable comparison between the LES and experimental spectra at each 
step of the construction of the line source, that is, T11, its azimuthal modes, their radial integration.

The line-source formulation becomes theoretically wrong as long as the Strouhal number increases, as illustrated in 
Fig. 9. Experimental and theoretical studies about acoustic radiation from coherent structures in jets are usually limited to 
low Strouhal numbers (see [9] for instance, with no reported data for St > 0.7). That is why the spectral components for 
St > 1 are incorrect (as expected) and are not worth to be further discussed, except through the error they may yield in the 
overall SPL.

5. Concluding remarks

Including key elements of the jet noise radiation process such as the axial source extent and the decreasing efficiency 
of azimuthal modes, a cost-effective low-storage diagnostic tool could be designed and applied to a Re = 460, 000, M = 0.4
round turbulent jet to predict the acoustic properties of the flow. The OASPL and the spectrum obtained in the present 
study compare fairly well with their experimental counterparts at low frequency and for moderate aft angles, without any 
empirical parameters. The present application has several limitations, which are summarised hereafter, with a discussion to 
see whether or not those limitations can be overcome.

• The agreement between the flow simulation and the experimental measurements is relatively good. Since the source 
quantity is based on the velocity field, this has a direct impact on the accuracy of the subsequent acoustic prediction. 
A finer tuning of the recycling technique may improve the quality of the velocity fields in the near field. Also, future 
studies will have to investigate the impact of our ILES strategy on the high-frequency content of the near field.

• The short collection time (100 D/Uc) for this preliminary study prevents the amplitude modulation of the wavepackets 
to be well described by the signal processing. Since this is an important ingredient of the acoustic efficiency, a longer 
collection time should be considered. However, once the azimuthal mode extraction is integrated into the flow solver, 
this may not lead to storage issue.

• The major limitation of the methodology is the radial compactness assumption, which confines the correctness to low 
aft angles and low frequencies, namely θo ≤ 50◦ and St ≤ 0.5. Still, most of the acoustic power is produced there, thus 
this may be acceptable as a first quantitative estimation. The radial direction then appears as a controller for the accu-
racy of the solution for high θo and St . It is possible to reduce the azimuthal dynamics to a couple of azimuthal modes, 
while including the axial phase effects. Those in the radial direction could be included by waiving the compactness 
assumption, which would require a significant computational additional effort yet staying far below the cost of a full 
3D integration.

• In the present study, only the first component of Lighthill’s tensor was considered. This seems to be acceptable for low 
aft angles. Accuracy at high aft angles requires, in addition to radial phase effect, the inclusion of components that do 
not involve the streamwise direction, namely T22, T33 and T23, for T1 j formally vanishes at θo = 90◦ .

• Finally, the ILES solves the incompressible Navier–Stokes equation. This is consistent with compactness assumptions. 
Nevertheless, it restricts the application of the present approach to low Mach numbers, since an analysis from linear 
parabolized stability equations showed that compressibility significantly reduces the growth rates of velocity fluctu-
ations, in agreement with the streamwise evolution of measured amplitudes (see [9], figure 16). This may limit the 
accuracy of the acoustic prediction, even for low St and low polar angles. How low the Mach number should be re-
mains an open question. The present value M = 0.4 appears to be low enough. Note that other Mach number values 
could be set in the acoustic part of the present method using the same (incompressible and non-dimensional) source 
data, for a negligible computational effort, as long as the compressibility and Reynolds number effects are not signifi-
cant.

In a recent study by [21], eight Dielectric Barrier Discharge (DBD) plasma actuators located just before the nozzle exit were 
used as an active control device with the aim to enhance the mixing of a turbulent jet. Strong modifications of the vortex 
structures downstream of the nozzle exit, with a substantial reduction of the potential core, an increase of the jet radial 
expansion, and an improvement of the mixing properties of the flow were reported in this study performed with the exact 
same flow configuration. Thanks to the methodology presented in the present paper, the influence of the plasma actuators 
on the acoustic field will be investigated in a future study.
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Appendix A. Line-source formalism

The full derivation of the line-source formulation [42,43] is given in this appendix. Starting with Lighthill’s formalism, 
a far-field approximation is used to make the geometrical decay independent of the radial and azimuthal source position 
and to simplify the phase term. Then an azimuthal Fourier series expansion is used before a radial compactness is assumed, 
making the line-source quantity appears. The formalism is relatively similar to the one presented in [6], yet in the present 
approach, a less restrictive far-field assumption is taken. Finally, an a priori analysis of the error is deduced from the 
asymptotic behaviour of Bessel functions for small arguments.

A.1. Lighthill’s integral solution

Taking the following Fourier transform

F
[

f̃ (x, t)
]

= f (x,ω) =
∞̂

−∞
f̃ (x, t)e−iωtdt (11)

where ω is the angular frequency and i2 = −1, the solution of the inhomogeneous Helmholtz equation
(
∇2 + k2

)
p′(x,ω) = −S(x,ω) (12)

where k = ω/c0 and c0 is the speed of sound in the far-field, is given, in an unbounded medium at rest, by

p′(x,ω) = −
˚

D

S(y,ω) G(x|y,ω) dy (13)

where D is the source region and y the position in it, while x is the observer position. Using Lighthill’s theory of aerody-
namic noise, the source term S , which should vanish outside D, is defined by

S = ∂2Tij

∂ yi∂ y j
= ∂2

∂ yi∂ y j

[
ρ ui u j + (p′ − c2∞ρ ′)δi j + σi j

]
(14)

where ui are the components of the velocity field u = (u, v, w), ρ ′ is the density fluctuation from its value in the medium 
at rest and σi j stands for the components of the viscous stress tensor σ . For low Mach numbers, isothermal, free shear 
flows, Tij can be approximated [44] by ρ0uiu j , where ρ0 is the supposed constant density of the fluid.

The Green function G corresponding to this problem is

G(x|y,ω) = −e−ikr

4πr
(15)

where r = |x − y|. The space derivatives in Eq. (14) can be transferred to G by virtue of the symmetry property of the 
convolution product. Thus they are exact, which is preferable than evaluating the derivatives from the numerical velocity 
fields. Since

∂2G

∂ yi∂ y j
= −e−ikr

r

[
−k2 rir j

r2
+ ik

r

(
3rir j

r2
− δi j

)
+ 1

r2

(
3rir j

r2
− δi j

)]
(16)

with ri = xi − yi and δi j defined as the Kronecker’s symbol, and by keeping only the 1/r term, expression (13) becomes

p′(x,ω) = − k2

4π

˚

D

rir j

r3
e−ikr T i j(y,ω) dy (17)
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A.2. Far-field assumption

Given the geometry of the round jet problem, it is relevant to write the observer location x in spherical coordinates 
(Ro, ϕo, θo) and the source location y in cylindrical coordinates (Rs, ϕs, Zs), where Ro is the distance from the nozzle exit 
jet centre, ϕ is the azimuthal angle, while θ is the elevation angle with respect to the jet axis, along and from which the 
distances are Zs and Rs, respectively. This yields:

r =
[

R2
o − 2Ro Rs sin θo cos (ϕo − ϕs) − 2Ro Zs cos θo + R2

s + Z 2
s

] 1
2

(18)

The source–observer distance r can be approximated at different degrees, according to far-field and compactness source 
assumptions. The least accurate option is to take

r ∼|y|�|x| |x| = Ro. (19)

Neglecting Rs only leads to

r ∼
Rs→0

[
R2

o + Z 2
s − 2Ro Zs cos θo

] 1
2

(20)

which may account for large axial source extent and small radial extent. As a reminder, Cavalieri et al. [6] used the following 
approximation

r ∼ Ro − Rs sin θo cos (ϕo − ϕs) − Zs cos θo (21)

Finally, neglecting (Rs/Ro)
2 and developing at first order the other terms than R2

o in Eq. (18) yields

r ∼ Ro − Rs sin θo cos (ϕo − ϕs) − Zs cos θo + Z 2
s

2Ro
(22)

Here, expressions (22) and (20) are used for the phase term and the geometrical decay, respectively, in order to accurately 
take into account the axial distribution of the source. Then, considering only the component T11, Eq. (17) becomes

p′(Ro,ϕo, θo,ω) ∼ −k2e−ikRo

4π

+∞ˆ

−∞

(Rs cos θo − Zs)
2 e

−ik

[
Z2

s
2Ro

−Zs cos θo

]

[
R2

o + Z 2
s − 2Ro Zs cos θo

]1/2

×
⎡
⎣

+∞ˆ

0

2πˆ

0

eikRs sin θo cos(ϕo−ϕs) T11 (Rs,ϕs, Zs,ω) dϕs Rs dRs

⎤
⎦ dZs (23)

A.3. Azimuthal Fourier series expansion

One now can take advantage of the azimuthal homogeneity of the problem through an azimuthal Fourier series expan-
sion of the source term. The azimuthal Fourier modes τi j(m) are thus introduced as

τ̃i j(Zs, Rs,m, t) = 1

2π

2πˆ

0

T̃ i j(Z s, Rs,ϕs, t) e−imϕs dϕs (24)

which can be evaluated in the flow solver itself, replacing the storage of the fine azimuthal evolution of the source quantity 
by the storage of a given number of Fourier coefficients. The source tensor is then given by

T̃ i j(Zs, Rs,ϕs, t) =
+∞∑

m=−∞
τ̃i j(Zs, Rs,m, t) eimϕs (25)

Reporting this into Eq. (23) yields

p′(Ro,ϕo, θo,ω) ∼ −k2e−ikRo

2

+∞ˆ

−∞
A

+∞ˆ

0

Rs

+∞∑
m=−∞

⎛
⎝τ11(Zs, Rs,m,ω)

2πˆ
ei[mϕs+kRs sin θo cos(ϕo−ϕs)] dϕs

2π

⎞
⎠ dRs dZs (26)
0
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where A is given by expression (5). The azimuthal integral can be rewritten as

eimϕo

2π

2πˆ

0

ei[m(ϕs−ϕo)+kRs sin θo cos(ϕs−ϕo)]dϕs = im eimϕo Jm(kRs sin θo) (27)

where Jm is the Bessel function of order m [48]. Then, a line quantity sm can be defined as

sm(Zs,ω) =
∞̂

0

τ11(Zs, Rs,m,ω) Jm(kRs sin θo) Rs dRs (28)

Substitution into (26) leads to

p′(Ro,ϕo = 0, θo,ω) ∼
+∞∑

m=−∞

−im k2 e−ikRo

2

+∞ˆ

−∞
A sm(Zs,ω) dZs (29)

Note that for the physical analysis in the plane ϕo = 0, the out of phase modes (m and −m) are summed, and what 
is referred to as mode m is indeed p′(m) + p′(−m). Moreover, starting from real data, τ11(m = 0) is real and τ11(−m) =
τ11(m)∗ , where ∗ denotes the complex conjugate. Consequently, since J−m(ξ) = (−1)m Jm(ξ), it is possible to write s−m =
(−1)ms∗

m . Combined with im from Eq. (27), it turns out finally that only the real part of T is involved in Eq. (3).
At this point, if the first azimuthal Fourier modes contain the main acoustic contribution, then the infinite discrete sum 

in expression (29) can reduce to a couple of 2D terms. With respect to the full 3D formulation (17), this saves a significant 
amount of source storage and computational cost. On the other hand, in the present form, the radial integration (28) must 
be evaluated for each frequency (through k) and for each observer elevation angle (θo). Assuming that the source is compact 
could reduce the problem by one more dimension, as presented in the following section. Source compactness is consistent 
with the use of incompressible data, which can successfully return the acoustic field for low Mach number cases [44,49].

A.4. Radial compactness

Using the asymptotic value of Bessel functions for small arguments [48], the dependency on Rs can be separated from 
the one on k and on θo. Indeed:

J0(ξ) ∼
ξ→0

J̄0(ξ) = 1 − ξ2

4
, Jm(ξ) ∼

ξ→0
J̄m(ξ) =

(
ξ

2

)m 1

m! (m ≥ 1)

Then, Eq. (28) reduces to

sm(Zs,ω) ∼
kRs sin θo→0

km sinm θo

2m m!
∞̂

0

τ11(Zs, Rs,m,ω) Rm+1
s dRs (30)

for m �= 0 and

s0(Zs,ω) ∼
kRs sin θo→0

∞̂

0

τ11(Zs, Rs,0,ω) Rs dRs

− k2 sin2 θo

4

∞̂

0

τ11(Zs, Rs,0,ω) R3
s dRs (31)

It means that the radial integration can be performed before the acoustic computation, while the front factor involving 
k and θo can be moved outside from the source integral. Reporting these into Eq. (29) leads to expression (3) and the 
definitions of Bm and t11 introduced in section 3.1.

The accuracy of the asymptotic values relies, however, on how small the product kRs sin θo is, which is a measure of the 
radial compactness, relatively to an observer elevation. The smaller θo is, the better it is. How small kRs sin θo is, not only 
determines whether the radial integration can be performed regardless of the observer, but also how Jm+1 is smaller than 
Jm for a given small argument. That product is thus the most important parameter of the procedure. Before quantifying its 
influence on the accuracy of the Bessel function evaluation, consider that ω = 2π St Uc/D , where St is the Strouhal number. 
Hence

kRs sin θo = 2π St M
Rs sin θo (32)

D
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Fig. 9. Relative error of the asymptotic value of Jm(ξ) for small argument ξ = 2π St M Rs
D sin θo to the exact value, as a function of Strouhal number and 

observation elevation angle. Left: J0, right: J1. Case M = 0.4, Rs/D = 1.

The relative error of the asymptotic value of Bessel’s functions Jm(ξ) for small argument ξ = kRs sin θo, noted J̄m(ξ), is 
quantified here by | Jm(ξ) − J̄m(ξ)|/| Jm(ξ)|. The Mach number is fixed to 0.4, which is the value of the experimental data 
used in the present study for comparison, while the behaviour for other values can be directly deduced from the present 
results by expanding or contracting the Strouhal number scale accordingly. The latter is varied from 0 to 1.5, while only the 
first quarter of a circle can be considered for θo due to the symmetry of the argument.

Concerning Rs/D , a reasonable upper value is of the order of unity. Close to the nozzle exit, the shear occurs at around 
Rs = D/2 and it is spreading downstream. All in all, the radial extent over which the source quantity is significant should 
be considered.

Contour levels of the error corresponding to J0 and J1 are plotted in Figs. 9a) and 9b), respectively, for Rs/D = 1. 
The behaviour for other values of Rs/D can be directly deduced from the present results by expanding or contracting the 
Strouhal number scale accordingly. If an error of 10% is acceptable, for J0, the radial compactness assumption is accurate 
up to St = 0.55 for all elevation angles, yet up to St = 1.5 for θ ≤ 22◦ only. The range of validity for J1 is qualitatively the 
same though significantly reduced.

Note that these conclusions are related to the error on the Bessel function evaluation, which has to be integrated over 
Rs. Thus, the global error of the procedure will depend on how the most efficient source components are distributed radially 
(if they are closer to the axis, the error will be small), combined with how they are distributed among the azimuthal modes 
and the Strouhal numbers (the lower, the better). Such distribution is more and more critical as θo is increasing.
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