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The influence of a pressure wavepacket’s characteristics
on its acoustic radiation
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Institut PPRIME, Department of Fluid Flow, Heat Transfer and Combustion, Universite� de Poitiers -
ENSMA - CNRS, Building B17 - 6 rue Marcel Dor�e, TSA 41105, 86073 Poitiers Cedex 9, France

Noise generation by flows is modeled using a pressure wavepacket to excite the acoustic medium 
via a boundary condition of the homogeneous wave equation. The pressure wavepacket is a generic 
representation of the flow unsteadiness, and is characterized by a space envelope of pseudo-

Gaussian shape and by a subsonic phase velocity. The space modulation yields energy in the super-

sonic range of the wavenumber spectrum, which is directly responsible for sound radiation and di-

rectivity. The influence of the envelope’s shape on the noise emission is studied analytically and 
numerically, using an acoustic efficiency defined as the ratio of the acoustic power generated by the 
wavepacket to that involved in the modeled flow. The methodology is also extended to the case of 
acoustic propagation in a uniformly moving medium, broadening possibilities toward practical 
flows where organized structures play a major role, such as co-flow around cruising jet, cavity, and 
turbulent boundary layer flows. The results of the acoustic efficiency show significant sound pres-

sure levels, especially for asymmetric wavepackets radiating in a moving medium.

I. INTRODUCTION

The goal of the present study is to estimate an acoustic

efficiency of unsteady flows, defined as the rate of energy

that aerodynamic fluctuations are able to leak into acoustic

waves. That problem is addressed here from the acoustical

point of view, that is, searching for which kind of excitation

the acoustic medium responds the most (or the least) effi-

ciently. In order to model flow induced noise, a generic exci-

tation may be a wave whose phase speed is subsonic and

whose amplitude is spatially modulated.1,2 This accounts for

a localized shear region embedded in the acoustic medium,

as one can find, e.g., within a spatially evolving mixing-

layer: Kelvin-Helmholtz vortices, due to a harmonic forcing

inflow, are convectively amplified before the pairing phe-

nomenon occurs. The hydrodynamic pressure fluctuation

associated with the vortices then has the form of such a

wavepacket along the mixing layer.3,4 Such radiation by

amplified hydrodynamic fluctuations also occurs at the trail-

ing edge of a sharp-edged flat plate.5 A solution of this prob-

lem is critical to the efficient design of control strategies,

because the latter may be different whether the acoustic

power output is due to a high amount of energy brought by

the hydrodynamic flow or a high efficiency through the con-

version process into acoustics.

The acoustic response to generic pressure distributions

is driven by a Cauchy problem whose direct numerical reso-

lution as a partial differential equation is difficult.6,7 Two

other techniques are available. The first one consists in the

definition of a source term as the acoustic excitation; that is

solving an inhomogeneous wave equation. The Lighthill for-

malism is the natural candidate to this aim. It has been car-

ried out by Obrist8 who modeled the first component of the

Lighthill tensor as a wavepacket, and investigated the role of

its phase velocity and its spatial distribution in a multi-

dimensional space, then extending to that of the group veloc-

ity.9 That author emphasized the predominant effects of

those characteristics on directivity patterns. The same for-

malism has been used through analytical and experimental

work by Papamoschou10 and Cavalieri et al.11 For jittering

wavepackets in a middle subsonic flow, the temporal fluctua-

tions of the envelope highlighted efficient conditions for

sound radiation. The second technique is to excite the wave

operator through the boundary conditions of the homogeneous

wave equation as used by Avital and Sandham12 (see also

Refs. 13–15, for instance). In particular cases, an analytical

solution might be provided, as Crighton and Huerre16 did to

suggest a theoretical explanation for the directivity of forced

jets that Laufer and Yen17 observed in their experiments. The

same track was followed by Fleury et al.18 on a cylindrical

Kirchhoff surface in the context of round jet noise.

The acoustic energy radiated by a pressure distribution

is triggered by its modes in the wavenumber spectrum

lower than the acoustic wavenumber (supersonic phase

speed9,15,19,20). The localized spatial envelope yields an

amplitude modulation in the wavenumber spectrum, instead

of a single pic at the hydrodynamic wavenumber in the

case of a wave without space modulation. Consequently,

even for subsonic phase speed, there is energy in the super-

sonic range of the wavenumber spectrum. This is usually

referred to as the supersonic tail of the wavepacket and cana)Electronic mail: florent.margnat@univ-poitiers.fr
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be considered as the purely radiating component of it. The

remaining part of the wavenumber spectrum of the pressure

distribution has mathematically no contribution to the

acoustic field in the Kirchhoff formalism. It may be con-

ceptually related to the silent base flow introduced by

Sinayoko and Agarwal,21 whose physical existence and

meaning has not yet been clearly established, however. On

the other hand, which proportion does that acoustic energy

represent with respect to the energy brought by the hydro-

dynamic wave needs further documentation, as well as the

dependence of this proportion on the wavepackets

characteristics.

The present paper follows the guideline set by Sandham

et al.14 through numerical integration of the homogeneous

Helmholtz equation in the Kirchhoff formalism, introducing

the acoustic excitation as a boundary condition. Salient fea-

tures of wavepackets are their shape, designed by the enve-

lope, and the wavenumber of the traveling waves within the

latter. The purpose of this study is to characterize the acous-

tic response of the medium to such generic excitation,

through a parametric investigation on the envelope function,

assumed static. The effect of both the hydrodynamic and the

acoustic compactness of the wavepacket is investigated,

varying the envelope length and the phase Mach number of

the traveling wave, respectively. The effect of an asymmetri-

cal envelope is specifically studied. The acoustic response is

described by the acoustic efficiency of the wavepacket and

how the acoustic intensity is distributed on the directivity

range. Propagation in an acoustic medium at rest is first con-

sidered. Second, the analysis is extended when a uniform

flow is present in the acoustic medium, using a convected

Green function. It thus broadens possibilities toward flows

where organized, unsteady motions may be identified as

dominant aeroacoustic sources such as cavities22 and turbu-

lent boundary layers.23

The paper is organized as follow: Section II explicits the

theoretical background with the mathematical conventions

hereby adopted for the resolution of the wave equation; the

Kirchhoff formalism is introduced in a static, propagation

medium and a formulation for a distant observer is given.

Analytical developments yielded prediction for high effi-

ciency conditions; the numerical tool is presented in Sec. III,

and its range of validity and interest is exhibited by compari-

son with the results given by the analytical formulas. In Sec.

IV, a selection of cases and results are provided to draw the

effective conditions of a high rate of energy release to the

acoustic medium. Finally, in Sec. V, the convected Green

function is used to study the efficiency of wavepackets when

a uniform flow is present in the acoustic medium. Additional

practical consequences are viewed in Sec. VI.

II. ANALYTICAL DEVELOPMENTS FOR A STATIC
PROPAGATION MEDIUM

A. The Kirchhoff formalism

@2

@x2
1

p̂ x; tð Þ þ
@2

@x2
2

p̂ x; tð Þ �
1

c2
1

@2

@t2
p̂ x; tð Þ ¼ 0

with x1 � R and x2 � Rþ. The Fourier transform in time,

defined as follows, is applied, yielding the homogeneous

Helmholtz equation:

f ðx;xÞ ¼
ðþ1
�1

f̂ ðx; tÞeþixtdt;

f̂ ðx; tÞ ¼ 1

2p

ðþ1
�1

f ðx;xÞe�ixtdx;

8>>>><
>>>>:

where i is the imaginary unit and x is the angular frequency.

For one particular mode, one obtains

@2

@x2
1

p xð Þ þ @2

@x2
2

p xð Þ þ k2
ap xð Þ ¼ 0; (1)

with ka ¼ x=c1. The excitation, assumed to be harmonic in

frequency, is introduced through the boundary condition (x2

¼ 0), in the following general form:

p x1; 0ð Þ ¼ P0A x1ð Þexp i
x
Uc

x1

� �
; (2)

where A is the envelope function, Uc is the phase velocity of

the convected wave, and P0 is the pressure amplitude. The

latter is taken as unity and will be omitted in the following,

unless otherwise specified. The problem is sketched up in

Fig. 1.

We resolve the Helmholtz Eq. (1) in the Kirchhoff for-

malism24 which yields the acoustic pressure according to the

initial distribution

p xð Þ ¼
ð

R yð Þ
G xjyð Þ

@p yð Þ
@n
� p yð Þ

@G xjyð Þ
@n

� �
dR yð Þ;

(3)

R(y) is the control surface and n its outward pointing nor-

mal. The two-dimensional (2D) free-space Green function

associated with the above Fourier transform convention is

FIG. 1. Notations for the excitation of the wave equation by a pressure dis-

tribution at a boundary. U1¼ 0, except in Sec. V.

We consider the wave equation for the acoustic pressure 
p̂(x, t), in the superior half-plane for a bi-dimensional, static, 
uniform medium



G xjyð Þ ¼ 1

4i
H 1ð Þ

0 karð Þ; (4)

with r¼ jx � yj and Hð1Þ� is the Hankel function of the first

kind of order �. In Eq. (3), the pressure gradient normal to the

control surface has to be prescribed in addition to the pressure

itself. However, for a plane Kirchhoff surface and no other

sources, the contributions of each of the two terms in Eq. (3)

to the resulting integral are identical.25 For other (relatively

simple) geometries, designing a tailored Green function can

fix that issue out.26,27 Equation (3) then becomes

p xð Þ ¼
ð

y2¼0

�2p yð Þ
@G xjyð Þ
@y2

� �
@y1: (5)

Deriving G(xjy) with respect to the coordinate y2 yields

@G xjyð Þ
@y2

¼ 1

4i
ka

r2

r
H 1ð Þ

1 karð Þ; (6)

where ri¼ xi � yi. Formula (5) provides the acoustic pressure

explicitly once the pressure distribution [Eq. (2)] is specified.

It is valid in both the near- and far-fields, and, through a nu-

merical integration, any distribution may be addressed.

However, the far-field approximation is now introduced,

allowing us to express the acoustic field as a function of the

supersonic part of the pressure distribution in the longitudi-

nal wavenumber space, and to derive analytical solutions for

specific distributions. Regarding the asymptotic behavior of

the Hankel function for large arguments

H 1ð Þ
� zð Þ �

ffiffiffiffiffi
2

pz

r
ei z��ðp=2ð Þ� p=4ð ÞÞ (7)

and r being approximated as r � jxj � x � y/jxj (for jxj
� jyj), the far-field expression of the Green function first de-

rivative (for y2¼ 0) becomes

@G xjyð Þ
@y2

� sin h

ffiffiffiffiffiffiffiffiffi
ka

8pR

r
ei kaR�kay1 cos hþ 3p=4ð Þð Þ; (8)

with R¼ jxj, sin h¼ x2/R, and cos h¼ x1/R. Substituting it

inside Eq. (5) yields

p xð Þ � E sin h

ffiffiffiffiffiffiffiffiffi
ka

2pR

r ðþ1
�1

p yð Þe�ika cos hy1 dy1;

where E¼ exp[i(kaR� (p/4))]. Introducing the Fourier trans-

form of p(y1, 0) in the axial direction

~f Kð Þ ¼ 1

2p

ðþ1
�1

f y1ð Þe�iKy1 dy1

f y1ð Þ ¼
ðþ1
�1

~f Kð ÞeþiKy1 dK

8>>>><
>>>>:

gives the acoustic pressure as

p xð Þ � E sin h

ffiffiffiffiffiffiffiffiffiffi
2pka

R

r
~p K ¼ ka cos hð Þ: (9)

Expression (9) shows that the acoustic response toward the

direction h in the far-field is proportional to the amplitude of

the spatial mode K¼ ka cos h. Thus jKj � ka, meaning that

only those spatial modes of the pressure distribution with a

wavenumber smaller than ka¼Mckh are able to excite the

acoustic far-field. They have thus been called the supersonic

tail of the wavepacket, for their phase velocity x/K is faster

than the sound speed. Expression (9) also establishes a direct

relation between the shape of the wavenumber spectrum in

the range [�ka; þka] and the directivity pattern, in agreement

with previous studies using either the Kirchhoff formal-

ism12,16 or a modeling of the Lighthill source term.8,28 The

directivity pattern is weighted, however, by sin h, exhibiting

a dipolar behavior in the transverse direction, with sound can-

cellation in the axial direction. This feature comes from the

normal derivative of the Green function (8) in the Kirchhoff

formalism. Studies that use a source term to excite the wave

equation, retaining only the longitudinal component of the

Lighthill tensor, do not exhibit such a formal dependence on

sin h. Expression (9) thus returns the acoustic field once the

wavenumber spectrum of the pressure distribution [Eq. (2)] is

known, which can be brought by a numerical evaluation, as

presented in Sec. III.

Before exploring a range of parameters for A and Uc in

the pressure distribution [Eq. (2)], further analytical develop-

ments may be conducted for specific distributions leading to

the explicit formula of the directivity and the acoustic effi-

ciency. Crighton and Huerre16 addressed the case of enve-

lopes A with Gaussian, exponential, and algebraic decays

along y1, while only the Gaussian form received the most

attention.8,11,13 Fleury et al.18 also proposed an envelope

with two sinusoidal arches, representing the growth and

decay of two instability modes in an excited jet.

A wavepacket model is relevant for two main reasons.

First, experimental results for unforced jets11 showed that

the axisymmetric mode of the acoustic field can be clearly

associated with an axially non-compact source, in the form

of a wavepacket. Now, the sound field for low polar angles

(measured with respect to the jet axis) is found to be domi-

nated by the axisymmetric mode, particularly at the peak

Strouhal number. Second, Ffowcs Williams and Kempton2

modeled the development of the unforced jet by randomness

in the phase velocity of the wavepacket, then predicted that

the field shapes and spectra for the excited and unexcited jet

are similar. Considering such a generality of the wavepacket

mechanism in aerodynamic noise generation, its acoustic ef-

ficiency deserves further investigation, in addition to existing

publications focused on directivity and restricted to jet

noise. Only the Gaussian case with fixed phase velocity is

addressed hereafter.

B. Gaussian wavepacket

A Gaussian, centered, static form is selected as the enve-

lope function of the wavepacket defined as

A y1ð Þ ¼ exp � y2
1

r2

� �
; (10)



where r is the parameter associated with the envelope

length. The Fourier transform of the initial pressure distribu-

tion [Eq. (2)] then becomes

~p Kð Þ ¼ r
2
ffiffiffi
p
p e� r2=4ð Þ kh�Kð Þ2 : (11)

Substituting ~p(K) into Eq. (9) yields

p xð Þ � Er sin h

ffiffiffiffiffiffi
ka

2R

r
e� r2=4ð Þ kh�ka cos hð Þ2 :

For a low subsonic phase speed where ka � kh, this can be

approximated by

p xð Þ �
Mc!0

Er sin h

ffiffiffiffiffiffi
ka

2R

r
e� r2=4ð Þk2

h e r2=2ð Þk2
hMc cos h; (12)

with Mc¼ ka/kh as the phase Mach number. This expression

is the same as expression (3.7) in Crighton and Huerre16

who solve the Helmholtz equation using the stationary phase

method. However, these authors assumed long envelopes

with respect to the hydrodynamic wavelength, while such

assumption is not used here. Further developments give

access to the angle of maximum pressure radiation a
defined by

@p xð Þ
@h

����
h¼a

¼ 0; (13)

whose two solutions are

a1;2 ¼ arccos
�16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2k2

hMc

� 	2
q

r2k2
hMc

2
4

3
5
: (14)

The positive one is plotted in Fig. 2(b). a decreases from

p/2 (the limit for Mc¼ 0) as the quantity r2k2
hMc increases.

The emission is thus directed toward lower angles as the wave-

packet is longer with respect to the hydrodynamic wavelength,

or the phase speed is higher. Note that r2k2
hMc ¼ rkh�rka,

meaning that the hydrodynamic compactness and the acoustic

compactness of the envelope multiply their influence on the

angle of maximum pressure radiation.

C. Acoustic efficiency

Now the rate of energy released to the medium by the ex-

citation is quantified through the acoustic efficiency g, defined

as the ratio between the power Wh provided as input by the

pressure distribution and the power Wa radiated as output

g ¼ Wa=Wh; (15)

with

Wh ¼
ð

y2¼0

jp y1; 0ð Þj2

q0c1Mc
dy1; Wa ¼ R

ðp

0

jp R; hð Þj2

q0c1
dh;

Wa �
2pka

q0c1

ðp

0

~p Kð Þ2 sin2hdh:

The power expresses dependency upon the supersonic

wavenumbers radiating at angle h through the parameter

K¼ ka cos h. For a simple Gaussian wavepacket, in the

case of low subsonic flow, substitution of expression

(11) yields

Wa �
Mc!0

p
2q0c1kh

e� r2k2
h=2ð ÞI1 r2k2

hMc

� 	
;

where In(z) is the modified Bessel function of the first kind

of integer order n. Note that there is no dependency on the

radius R as a consequence of the far-field approximation.

Expliciting the integral over y1 in the case of a Gaussian,

centered wavepacket returns Wh as

Wh ¼
r

q0c1Mc

ffiffiffi
p
2

r
(16)

exhibiting proportionality between the hydrodynamic power

and the length of the Gaussian envelope. Combining those

results yields the following analytical expression for the

acoustic efficiency g, namely,

g �
Mc!0

ffiffiffi
p
2

r
Mc

khr
e� r2k2

h=2ð ÞI1 r2k2
hMc

� 	
: (17)

Exhibiting rkh, expression (17) first shows that the

hydrodynamic wavelength is the appropriate reference for

the envelope extent r regarding the acoustic efficiency.

In other words, hydrodynamic compactness is the driving

parameter. Second, expression (17) shows that shorter

wavepackets are more efficient, as explained by Obrist:8

the enlargement of the wavepacket envelope leads to a

thinning of the spectral envelope around the hydrody-

namic wavenumber. Thus, the radiating part of the exci-

tation, localized in the range [�ka; þka], will be lower,

affecting in the same way the acoustic efficiency.

Isocontours of g given by Eq. (17) are plotted in Fig.

2(a), and exhibit a very large range of values, distributed

on more than 20 orders of magnitude, from about 10�25

at low Mc for long envelopes, to about 10�2 at relatively

high Mc for short envelopes. Differentiating Eq. (17),

one can show that the acoustic efficiency reaches a

maximum for a value of r, noted rmax, by the solution

of

rmaxkh �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3I1 r2

maxk2
hMc

� 	
2McI0 r2

maxk2
hMc

� 	
� I1 r2

maxk2
hMc

� 	
s

¼ 0:

(18)

That value is close to unity as is visible in Fig. 2(a) up to

Mc¼ 0.5. The amplitude of the highest efficiency point is

driven by the phase Mach number Mc though it is obtained

for rkh 	 1 whatever the phase Mach number Mc. More pre-

cisely, we observe that the value of the maximum acoustic

where j/j is the modulus of /. Using Eq. (9), the acoustic 
power is given by



efficiency scales as M2
c , while the value of rkh for which the

maximum is reached deviates from the unity with M2
c too.30

The analytical results of this section were obtained

assuming low Mc. Their validity is thus questionable as Mc is

increasing, that is, as acoustic compacity of the hydrody-

namic wave is lost. For high Mc, the integration giving the

acoustic power has to be evaluated numerically, using

known or computed wavenumber spectra of the pressure dis-

tribution. The numerical apparatus that computes either Eqs.

(5) or (9) then Eq. (15) is presented in Sec. III.

III. IMPLEMENTING THE KIRCHHOFF INTEGRAL

A. Tool presentation

A numerical tool is developed to solve Eq. (1) in the

Kirchhoff formalism in the far-field; that is, using Eq. (9).

The length Ly1
of the pressure distribution line is as long as

80 hydrodynamic wavelengths kh¼ 2p/kh with a numerical

step dy1¼ kh/40 obtained from prior tests.29 The acoustic

pressure is computed at five points for each degree on an ob-

server circle at a given R. Both the Kirchhoff surface and the

observer domain are centered in the axial direction (namely,

y1 and x1, respectively). If the wavenumber spectrum of the

pressure distribution is not known analytically, e.g., for

asymmetric wavepackets, the specific mode K¼ ka cos h for

a regular set of angles h is computed directly from the defini-

tion of the Fourier transform with trapezoidal rule integra-

tion. This reduces the computational cost with respect to

standard fast Fourier transform routines, which would

require an extremely long spatial window to obtain the

desired resolution at the lowest wavenumbers. That proce-

dure contains two sources of errors: on one hand, the rapid

decay to the machine zero of the Gaussian envelope and its

wavenumber spectrum, and on the other hand the windowing

of the spatial envelope when evaluating the integral of the

Fourier transform with finite bounds. In practice, at low

phase velocities, a bounding of r was found around 12/kh,

after which the numerical procedure is affected by the round

off error in the acoustic power integral and/or the secondary

lobes due to the truncation of the envelope. Such bounding

increases with the phase Mach number, and can be slightly

mitigated by the use of quadruple precision or smarter inte-

gration algorithms.

In Fig. 2, isocontours of the acoustic efficiency of the

wavepacket and of the angle of maximum emission are plot-

ted as generated by the numerical tool described in this sec-

tion compared to those given by the analytical expressions

(17) and (14), respectively. For low phase velocities and

long wavepackets, the agreement is perfect. When the phase

velocity is increased, the analytical result loses validity and

deviates from the numerical solution; this effect seeming

more important for larger r.

Further validation of the numerical tool is provided

through the comparison of the pressure field, as given by the

far-field approximation (9), the exact Kirchhoff integral (5),

and the analytical expression (12) for a Gaussian, centered

wavepacket. The acoustic response jp(R,h)j2 depicted in

Fig. 3 is observed at radii R¼ ka and R¼ 5ka, for r¼ kh

under a phase Mach number Mc¼ ka/kh¼ 0.05. Perfect

agreement is found at R¼ 5ka while a slight discrepancy

occurs for radius R¼ ka between the exact Kirchhoff inte-

gral in Eq. (5) on one hand and the far-field approximation

in Eq. (9) and the analytical expression (12) on the other

hand. At a larger radius, comparing Eqs. (12) and (9) shows

the good implementation of the Fourier transform with trap-

ezoidal rule integration. Comparing Eq. (9) with expression

(5) indicates that the far-field is reached soon, for the formu-

lations match even at a radius R¼ 5ka. In the following, the

results are computed from the far-field approximation of the

Kirchhoff integral (9) for computation cost concerns.

B. Parametric study

The numerical tool is used to supplement the analytical

study with results for configurations beyond its validity field,

starting with a static acoustic medium and then extending

the investigations to the propagation in a moving medium.

Two cases are addressed, as presented in the following:

(1) The influence of higher phase velocities is first tested,

from 0.002 to 0.900, for the Gaussian, symmetric wave-

packet. For Mc¼ ka/kh, the phase Mach number drives

the acoustic compactness of both the traveling hydrody-

namic wave and its envelope. To clarify the reading, the

compactness of the traveling hydrodynamic wave will be

identified as the wavelength compactness and the com-

pactness of the envelope as envelope compactness, as

FIG. 2. Isocontours of efficiency (left) and of angle of maximum pressure radiation in degrees (right) for a Gaussian, centered, symmetric wavepacket.

Comparison between analytical (dashed lines) and numerical (solid lines) results for the influence of the phase velocity and envelope length.



defined by the parameter rka. The influence of Mc on

compactness is visible in the schematic of Fig. 4(a)

where the longitudinal coordinate is scaled with the

acoustic wavelength. The phase Mach number also

pushes back the limitation in r, so that longer envelopes

can be studied [see Fig. 4(b)].

(2) Asymmetric cases are then tested, thus moving closer to

practical hydrodynamic structures whose growth would

be different from their decay. The wavepacket length is

fixed in the upstream direction and is labeled ru while r
extends as for the symmetric case [Fig. 4(c)]. Such form

of wavepacket can also be found in Refs. 10 and 20. It is

worth noting that no difference is found regarding the

orientation of the asymmetry (upstream or down-

stream)29 whether in a static propagation medium or in a

medium in motion.

The effects of these changes in the wavepacket envelope

are quantified with the acoustic efficiency g and angle of

maximum emission a at a fixed radius R in the far-field, as

discussed in Sec. II. A wavepacket whose envelope is consti-

tuted by two halves of a Gaussian linked by a plateau is con-

sidered in Serr�e.30

IV. PROPAGATION IN A STATIC MEDIUM

A. Influence of the phase Mach number and the length
of a Gaussian, centered, symmetric wavepacket

The effects of the phase Mach number Mc and the length

rkh are depicted in Fig. 5, both on the efficiency g and the

angle of emission a. Increasing the phase velocity has two

effects. The first one is a rise of the efficiency, expected

from the loss of wavelength compactness, with an exponen-

tial shape. The second effect is an evolution of the directivity

angle: for Mc< 0.4, it is moved downward, then it reaches a

plateau for intermediates Mc, before it goes upward again for

Mc> 0.6. Note also that for short wavepackets, the plateau is

reached for lower values of Mc and lasts longer. The behav-

ior at low Mc is consistent with observations of Moser et al.3

who reported such an effect of the convective Mach number

on the noise directivity for subsonic mixing-layers. At a

given phase velocity, the maximum of efficiency is reached

around rkh¼ 1, which does not deviate from the conclusions

of the analytical study. The length of the wavepacket has a

strong influence on the efficiency and directivity: short

wavepackets have a strong efficiency and maximum radia-

tion close to the transverse direction, while long wavepack-

ets radiate toward low polar angles with low efficiency. That

lowering of the directivity angle is faster when the phase ve-

locity is increased.

B. Influence of the phase Mach number and the length
of a Gaussian, centered, asymmetric wavepacket

When the growth of the wavepacket is different from the

decay, the effects of the phase Mach number Mc and the

length rkh are observed for two upstream lengths, namely,

rukh¼ 2p and rukh¼ 20p. These lengths are chosen for their

qualitatively different behavior. The smallest length rukh¼ 2p
corresponds to an acoustically compact wavepacket, with high

efficiency in the symmetrical case. The largest one is extended

with a pronounced directivity in the symmetrical case. The

behavior of the asymmetrical wavepacket shown in Figs. 6

and 7 exhibits singularities comparative to the symmetrical

case. The falls of efficiency in Fig. 6(a) appears here when

r¼ ru, which is the symmetrical case. That is a noteworthy

result, when the symmetrical case is long enough to be silent,

its non-symmetric counterpart still emits noise. When r< ru,

the efficiency is increased by an increase of both r and Mc.

FIG. 3. Validation of the far-field approximation of the Kirchhoff integral

(9) (dashed line) with the exact Kirchhoff integral (5) (solid line) and analyt-

ical expression (12) (symbols). Mc¼ 0.05; rkh¼ 2p. Observed at R¼ ka

(black plots) and R¼ 5ka (gray plots).

FIG. 4. Wavepacket shapes used in the parametric study.



When r> ru, the efficiency is determined by the sole Mc.

Moreover, due to the asymmetry, the angle of maximum emis-

sion for a given phase speed is almost only determined by the

phase Mach number, irrespective of the length of the wave-

packet as long as r is higher than a function like kh/(1 � Mc)

[Figs. 6(b) and 7(b)]. Below, the emission angle is driven to-

ward low polar angles both by the length and the phase Mach

number. Such strong deviation from the behavior observed in

the symmetric case [Fig. 5(b)] is worth noticing.

Those results lead to the conclusion that for a low Mach

number, even a small loss of symmetry will lead to a strong

increase of the acoustic efficiency. The directivity however

will be more stable if the length is longer than the hydrody-

namic wavelength.

V. PROPAGATION IN A MOVING MEDIUM

Considering a medium in motion will tell how the con-

clusions in a static medium remains suitable regarding

convected acoustic waves. It allows us to get closer from re-

alistic flows where organized structures play a major role,

such as co-flow around cruising jet, cavity, and turbulent

boundary layer flows, for instance, where the sound waves

are convected by the flow at infinity.

A. Expression of the acoustic pressure

To account for the presence of a uniform flow at

U1¼M1c1 in the same direction as the hydrodynamic

wave (see Fig. 1), the convected Green function is used. For

2D problems, it is given in the frequency domain by24

Gc xjyð Þ ¼ 1

4ib
exp i

M1kar1

b2

� �
H 1ð Þ

0

karb

b2

� �
; (19)

with ri¼ xi� yi, b2¼ 1�M2
1, and rb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

1 þ b2r2
2

q
.

Deriving Gc(xjy) yields

FIG. 5. Phase velocity and wavepacket length effects. Left: Isocontours of efficiency. Right: Isocontours of angle of maximum pressure radiation in degrees.

Gaussian, centered, symmetric wavepacket.

FIG. 6. Wavepacket length effects in the asymmetric case. Left: Isocontours of efficiency. Right: Isocontours of angle of maximum pressure radiation in

degrees. rukh¼ 2p.



@Gc xjyð Þ
@y2

¼ 1

4ib
ka

r2

rb
exp i

M1kar1

b2

� �

�H 1ð Þ
1

karb

b2

� �
: (20)

In the far-field one can write rb �
jxj�jyj

xb � ðx1=xbÞy1 with

xb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ b2x2
2

q
. Using Eq. (7), Eq. (20) becomes

@Gc xjyð Þ
@y2

¼ 1

i
sin hb

ffiffiffiffiffiffiffiffiffiffi
ka

8pxb

s

� e½iðka=b
2ÞðM1x1þxb�ðM1þðx1=xbÞÞy1Þ�3ðp=2Þ
;

(21)

with sinhb¼ x2/xb. The Kirchhoff surface being aligned with the

flow in the observer region, Eq. (5) still holds, and introducing

the convected Green function derivative into it yields

p xð Þ� sinhb

ffiffiffiffiffiffiffiffiffiffi
2pka

xb

s
�e

i kaxb=b
2ð Þ M1 coshbþ1ð Þ� p=4ð Þ


 �
p̂ Kbð Þ;

(22)

for Kb¼ ka(M1þ cos hb)/b2 with cos hb¼ x1/xb. A new

expression for the far-field approximation of the Kirchhoff in-

tegral is obtained. The acoustic response of an aeroacoustic ex-

citation within a convected medium is then driven by the

mode Kb¼ ka(M1þ cos hb)/b2 in the pseudo-direction hb.

Expliciting this expression in the case of a Gaussian, centered,

symmetric wavepacket for a low phase Mach number yields

p xð Þ � re�ðr
2k2

h=4Þ sin hb

ffiffiffiffiffiffiffi
ka

2xb

s

� e
i kaxb=b

2ð Þ M1 cos hbþ1ð Þ� p=4ð Þ

 �

� e r2k2
h=2ð Þ Mc=b

2ð Þ M1þcos hbð Þ: (23)

Compared to expression (12), the convected acoustic factor

modifies the space dependence through xb and hb instead of

simply r and h. Beyond that and the phase factor, the only

effect brought by a mean flow in the observer domain is the

factor expðr2k2
h=2�McM1=b

2Þ to the amplitude. It results

in an increased pressure radiation as the flow velocity

increases. Since the hydrodynamic power is unchanged, the

acoustic efficiency may thus be enhanced by the same

(squared) factor. Moreover, M1 is added to cos hb, then influ-

encing the directivity. The expression for the propagation in a

medium at rest is recovered when M1 is set to zero in Eq. (22).

The far-field approximation (22) is now computed using

the tools developed for the static medium propagation case

exposed earlier. The range of envelope lengths from Sec. IV

is considered. The Mach number at infinity M1 varies

through conservation of a Mach number ratio defined as Mc/

M1 since in real configurations, the external flow drives the

convection of the coherent structures. For instance, is

encountered a ratio Mc/M1 � 0.3 in boundary-layer flows,

Mc/M1 � 0.5 in cavity flows, and eventually, Mc/M1 � 0.7

in wake flows. For every plotted situation, the maximum

value for the Mach number at infinity ends up at M1¼ 0.8

then leading to different maximum values for Mc for differ-

ent Mach number ratios.

B. Influence of the phase Mach number and the length
of a Gaussian, centered, symmetric wavepacket

Two lengths are considered here (rkh¼ 1 and rkh¼ 10).

The smallest length has been recognized as the length of

maximum efficiency whatever the Mc in Fig. 5(a). The range

that covers the second length associated with the phase

Mach number evolution enables to study cases for static

propagation medium exhibiting directivity around 30� for

lower Mc, a plateau of directivity on very low polar angles

and a new rise toward higher polar angles for higher Mc

[Fig. 5(b)]. Figure 8 exhibits those two lengths at the three

FIG. 7. Wavepacket length effects in the asymmetric case. Left: Isocontours of efficiency. Right: Isocontours of angle of maximum pressure radiation in

degrees. rukh¼ 20p.



Mach number ratios that were selected for their fair repre-

sentation of real flow configurations. The corresponding

static case M1¼ 0 is added for comparison. The phase

Mach number is set on the horizontal axis and its maximum

value is yielded from the Mach number ratio as explained

above. Figure 8(a) displays the acoustic efficiency g, and

Fig. 8(b) the angle of maximum emission.

The increase of the acoustic efficiency with Mc and M1
follows what was expected from the analytical result [Eq.

(23)]. The previous conclusions regarding the phase Mach

number Mc effects on efficiency still hold for a moving me-

dium, that is, at a given length, the higher Mc, the higher effi-

ciency [Fig. 8(a)]. The length r has a major impact on the

efficiency g. A smaller length leads to a lower efficiency as

mentioned in the static case. The length rkh¼ 1 is efficient

and is not much influenced by the motion of the observer

medium, the behavior being similar to the static case for

lower Mc. The length rkh¼ 10 is less efficient at lower Mc,

but rapidly reaches high efficiency conditions, until meeting

the shorter case (rkh¼ 1) and, consequently, is more depend-

ent on the flow regime. Eventually, when M1¼ 0.8 (end of

the curves), the same order of magnitude is reached for every

length and every Mach ratio, reaching almost 60% in the

noisiest situation. Up to a specific value of Mach numbers,

the efficiency does not depend on the length any more. Such

high efficiency is noteworthy, as far as aeroacoustics is

concerned.

It has been seen that the rise of the phase Mach number

drives the emission angle toward low polar angles before a

plateau and a new rise. The same behavior is found when

increasing the Mach number ratio, leading to the conclusion

that the phase Mach number has significant effects. Two

trends can be identified in Fig. 8(b). For low lengths, the

emission angle seems to be weakly affected, exhibiting a

steady value. For high lengths, the displacement of the emis-

sion angle toward low polar angles is emphasized as well as

the plateau and the new rise around M1¼ 0.5, represented

in Fig. 8(b) by the dashed, gray straight lines.

The truth is, the same behavior does occur for both plot-

ted lengths, though it is reinforced for higher r: a specific

value for the phase Mach number Mc is selected according to

its Mach number ratio, beyond which the dependency on r is

eradicated concerning the efficiency and to a lesser extent,

the angle of maximum emission. That selection provides

high efficiency conditions and radiation toward the trans-

verse direction. Eventually, the Mach number at infinity

moves the directivity toward the transverse direction, while

the case M1¼ 0 exhibits a continuous decay toward low po-

lar angles, except a very shy rise for longer wavepackets.

C. Influence of the length of an asymmetric
wavepacket

For convected acoustics, the influence of the length of

an asymmetric wavepacket is depicted in Fig. 9 for the

acoustic efficiency [Fig. 9(a)] and the angle of maximum

emission [Fig. 9(b)]. The upstream lengths depicted below

are set as the lengths investigated in the static case, namely,

rukh¼ 2p and rukh¼ 20p. Two downstream lengths are

tested such as rkh¼p and rkh¼ 4p to avoid both the sym-

metric case and the singular value when the wavepacket

scales as the hydrodynamic wavelength as emphasized in the

static case (see Figs. 6 and 7). The Mach number ratio Mc/

M1 is set constant so as the Mach number at infinity is twice

the phase Mach number in addition to the case M1¼ 0 for

comparison. For all plotted lengths of wavepacket, the effi-

ciency g is increased by the convection velocity in the ob-

server domain as soon as Mc� 0.2. For higher ru, the

efficiency decreases and this trend is accentuated by a higher

length r [Fig. 9(a)]. All the lengths do converge when

M1¼ 0.8 as for the symmetric case at nearly g¼ 40%. A

point worth noting is the same trend in three steps in the

emission angle as highlighted previously (see Figs. 5 and 8);

although the plateau is skipped, the decrease toward low po-

lar angle lasting longer and being stronger than the symmet-

ric case, before the new rise when M1¼ 0.5 (or Mc¼ 0.25).

FIG. 8. Effects of convection in the observer medium on the acoustic emission of wavepackets. Symmetric case. Left: Efficiency. Right: Angle of maximum

pressure radiation. The dashed, gray straight lines mark M1¼ 0.5 for the corresponding Mc with respect to the Mach number ratio.



The same conclusion as for the symmetric case is drawn,

namely, a specific value for Mc is selected and beyond that

value, the dependency on r is lost, for both the efficiency and

the angle of maximum emission converge whatever the

length of the wavepacket. The minimum value for the emis-

sion angle, that is, the peak occurring at M1¼ 0.5 is rein-

forced as the length is increased [Fig. 9(b)]. This trend has

been emphasized in the static case [Figs. 6(b) and 7(b)],

namely, increasing the length will bring the directivity to-

ward lower angles. Computations for higher Mach number

ratio Mc/M1 exhibit the very same trend, except for the sin-

gularity, namely, the rise of both efficiency and emission

angle occurs for lower M1.

VI. CONCLUDING REMARKS

much could be expected from control strategies, in particu-

lar, at low phase Mach numbers. A numerical tool has been

designed in order to address long envelopes, asymmetric

envelopes, and high phase velocity of the hydrodynamic

wave. We started with acoustic propagation in a medium at

rest, then extended the problem to the presence of a uniform

flow in the propagation region. For a Gaussian envelope, an-

alytical developments and numerical computations empha-

size a maximum efficiency when the wavepacket scales as

the hydrodynamic wavenumber. The amplitude for this max-

imum efficiency scales as the second power of the phase ve-

locity. On the other hand, the angle of maximum emission is

predicted to be p/2 without phase speed, then decreases by

increasing either the length or the phase velocity of the

wavepacket. Increasing the phase speed moves the emission

angle downstream, before expressing a plateau and rising

again. In the case of a Gaussian wavepacket with non-

symmetric features, it is more efficient and steadier on its

maximum emission angle comparative to the corresponding

symmetric case.

The use of the convected Green function allowed us to

derive an original, analytical expression for the acoustic field

accounting for the presence of a uniform flow in the propa-

gation medium. It shows that the Mach number at infinity

adds its influence exponentially with the phase velocity to

the acoustic pressure radiation and the resulting efficiency.

With asymmetric features, the emission angle is less likely

to express a plateau, its directivity resisting to approach the

low polar angles.

In order to give a clue for practical concerns from the

present results, typical values are provided in Table I for a

selection of envelopes and covering subsonic regime of the

Mach numbers. The acoustic efficiency is reported, as well

as the sound pressure level (SPL) estimated in the direction

of maximum emission at 100 acoustic wavelengths, which

corresponds to 34 m in air for a frequency of 1 kHz, for a

wavepacket amplitude P0 of 100 Pa. For a propagation in a

static medium, about 95 dB are obtained at Mc¼ 0.4, for the

FIG. 9. Effects of convection in the observer medium on the acoustic emission of wavepackets. Asymmetric case. Left: Efficiency. Right: Angle of maximum

pressure radiation.

The homogeneous Helmholtz equation was resolved in

the Kirchhoff formalism in order to characterize and investi-

gate the acoustic response of the medium to a generic excita-

tion. The excitation was applied to the wave operator

through a pressure distribution at a boundary condition, with

a generic Gaussian shape. The acoustic response was charac-

terized both numerically and analytically by two criteria: (i)
the angle of maximum emission; (ii) the rate of energy

actually released to the far-field, namely, the acoustic effi-

ciency. A better distinction is allowed between high effi-

ciency conditions or high hydrodynamic power brought by

the excitation. That second criterion has been less investi-

gated before in the wavepacket approach. The study could

have been conducted for a three-dimensional (3D) problem

with a cylindrical control surface, but we did not want to

restrict it to the jet configuration. A plane study, however,

can represent radiation from, e.g., boundary layer or cavity

flows, while then a 3D case would have brought more com-

plexity in the parametric study.

A general conclusion is that acoustic efficiency spreads

over several (about 20) orders of magnitude, depending on

the envelope shape, on its length, and on the wavepacket

phase Mach number. This wide range of values means that



most efficient, symmetric wavepacket, and for the top-hat

envelope.30 Note that in the former case, such SPL is due to

a high efficiency, while it is due to high hydrodynamic

power input in the latter case, with an efficiency thousand

times smaller. Though the resulting SPL is the same in both

cases, the sound production mechanisms are not, what may

be of consequence as far as the design of control strategies is

concerned. When the medium is set in motion, the values at

the lowest Mach number are almost unchanged, but in the

high subsonic regime, the effect of convected acoustics dras-

tically enhances the noise. For instance, for M1¼ 0.8 and a

Mach number ratio of 0.5, the highest value of Mc is the

same as that in the static medium case, while the SPL is

greater by 10 to 90 dB. The noisiest configuration being then

the asymmetric wavepacket with long envelope, which com-

bines high efficiency and high hydrodynamic power input,

with 135 dB in the direction of maximum emission.

The wavepacket approach for aerodynamic noise notwith-

standing, the present results provide a guideline for the analy-

sis of pressure distributions in the near-field when the acoustic

response is targeted. Those obtained for propagation in a static

medium can be applied in mixing layer or jet configuration.

The extension of the approach to the convected Helmholtz

equation allows using them in other flow configurations of in-

terest. For instance, wakes, cavity configurations, or boundary

layers may be considered. In such configurations, the Mach

number at infinity is higher than the phase Mach number of

the hydrodynamic wave, which is slowed down by a reverse

flow or a no-slip condition at the wall.
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NOMENCLATURE

A wavepacket’s envelope function

c1 sound velocity

G Green’s function
Gc convected Green’s function

i imaginary unit

ka¼x/c1 acoustic wavenumber

kh¼x/Uc hydrodynamic wavenumber

M1¼U1/c1 convection Mach number

Mc¼Uc/c1 phase Mach number of the hydrodynamic

wave

n outward pointing normal

p acoustic pressure in spatio-temporal

domain

p̂ monochromatic acoustic pressure in spatial

domain

~p monochromatic acoustic pressure in the

longitudinal wavenumber domain

P0 actual pressure amplitude

r¼ jx � yj local distance to observer

R¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2

p
global distance to observer

U1 convection velocity

Uc phase velocity of the hydrodynamic wave

x¼ (x1; x2) space coordinates (observer)

y¼ (y1; y2) space coordinates (control surface)

t time

Wa acoustic power (output)

Wh hydrodynamic power (input)

a angle of maximum radiation

b¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

1
p

Prandtl-Glauert factor

rb pseudo-observer distance for convected

acoustics

xb pseudo-observer coordinates for convected

acoustics

hb pseudo-observer angle for convected

acoustics

ka¼ 2p/ka acoustic wavelength

kh¼ 2p/kh hydrodynamic wavelength

g acoustic efficiency

q0 uniform density

r half-length associated with the envelope

function

ru half-length associated with the envelope

function in the upstream direction in case

of asymmetry

R control surface

h observation angle

x angular frequency

1P. Jordan and T. Colonius, “Wave packets and turbulent jet noise,” Ann.

Rev. Fluid Mech. 45, 173–195 (2013).
2J. E. Ffowcs Williams and A. J. Kempton, “The noise from the large-scale

structure of a jet,” J. Fluid Mech. 84, 673–694 (1978).
3C. Moser, E. Lamballais, F. Margnat, V. Fortun�e, and Y. Gervais,

“Numerical study of Mach number and thermal effects on sound radiation

by a mixing layer,” Int. J. Aeroacoust. 11, 555–580 (2012).
4F. Margnat and X. Gloerfelt, “On compressibility assumptions in aero-

acoustic integrals: A numerical study with subsonic mixing layers,”

J. Acoust. Soc. Am. 135, 3252–3263 (2014).

TABLE I. Bounding values of the acoustic efficiency and SPL in the direction of maximum emission (h¼ a) at the distance R¼ 100ka, for P0¼ 100 Pa.

Static observer

medium Mc varies from 0.05 to 0.4

Observer medium in motion at M1
varying from 0.1 to 0.8 with Mc¼ 0.5M1

Acoustic efficiency g SPL [dB] Acoustic efficiency g SPL [dB]

Gaussian, centered, symmetric wavepacket rkh¼ 1 9.5� 10�4! 6.1� 10�2 75! 93 9.7� 10�4! 2.6� 10�1 75! 102

Gaussian, centered, asymmetric wavepacket rkh¼ 8p, rukh¼ 2p 1.1� 10�7! 2.7� 10�5 47! 74 1.2� 10�7! 4.0� 10�1 47! 126

Gaussian, centered, asymmetric wavepacket rkh¼ 8p, rukh¼ 20p 8.3� 10�11! 1.3� 10�8 21! 44 8.7� 10�11! 4.0� 10�1 21! 135



5D. J. Moreau, L. A. Brooks, and C. J. Doolan, “On the aeroacoustic tonal

noise generation mechanism of a sharp-edged plate,” J. Acoust. Soc. Am.

129, EL154–EL160 (2011).
6L. Marin, “An alternating iterative MFS algorithm for the Cauchy problem

for the modified Helmholtz equation,” Comput. Mech. 45, 665–677 (2010).
7C. Tajani, J. Abouchabaka, and O. Abdoun, “KMF algorithm for solving

the Cauchy problem for Helmholtz equation,” Appl. Math. Sci. 6,

4577–4587 (2012).
8D. Obrist, “Directivity of acoustic emissions from wave packets to the far

field,” J. Fluid Mech. 640, 165–186 (2009).
9D. Obrist, “Acoustic emissions from convected wave packets,” Phys.

Fluids 23, 026101 (2011).
10D. Papamoschou, “Prediction of jet noise shielding,” in 48th AIAA

Conference, AIAA2010-653 (2010).
11A. V. G. Cavalieri, P. Jordan, T. Colonius, and Y. Gervais, “Axisymmetric

superdirectivity in subsonic jets,” J. Fluid Mech. 704, 388–420 (2012).
12E. J. Avital and N. D. Sandham, “A note on the structure of the acoustic

field emitted by a wave packet,” J. Sound Vib. 204, 533–539 (1997).
13E. J. Avital, N. D. Sandham, and K. H. Luo, “Mach wave radiation by

mixing layers. Part I: Analysis of the sound field,” Theor. Comput. Fluid

Dyn. 12, 73–90 (1998).
14N. D. Sandham, C. L. Morfey, and Z. W. Hu, “Sound radiation from expo-

nentially growing and decaying surface waves,” J. Sound Vib. 294,

355–361 (2006).
15E. J. Avital, R. E. Musafir, and T. Korakianitis, “Nonlinear propagation of

sound emitted by high speed wave packets,” J. Comput. Acoust. 21, 1–21

(2013).
16D. G. Crighton and P. Huerre, “Shear-layer pressure fluctuations and

superdirective acoustic sources,” J. Fluid Mech. 220, 355–368 (1990).
17J. Laufer and T. C. Yen, “Noise generation by a low Mach number jet,”

J. Fluid Mech. 134, 1–32 (1983).
18V. Fleury, C. Bailly, and D. Juv�e, “Shear-layer acoustic radiation in an

excited subsonic jet: Models for vortex pairing and superdirective noise,”

C. R. M�ecanique 333, 754–761 (2005).

19A. P. Dowling and T. P. Hynes, “Sound generation by turbulence,”

European J. Mech. B/Fluids 23, 491–500 (2004).
20M. Koenig, A. V. G. Cavalieri, P. Jordan, J. Delville, Y. Gervais, and D.

Papamoschou, “Far-field filtering and source imaging of subsonic jet

noise,” J. Sound Vib. 332, 4067–4088 (2013).
21S. Sinayoko and A. Agarwal, “The silent base flow and the sound sources

in a laminar jet,” J. Acoust. Soc. Am. 131, 1959–1968 (2012).
22X. Gloerfelt, “Compressible proper orthogonal decomposition/Galerkin

reduced-order model of self-sustained oscillations in a cavity,” Phys.

Fluids 20, 115105 (2008).
23X. Gloerfelt and J. Berland, “Turbulent boundary-layer noise: Direct

radiation at Mach number 0.5,” J. Fluid Mech. 723, 318–351

(2013).
24X. Gloerfelt, C. Bailly, and D. Juv�e, “Direct computation of the noise radi-

ated by a subsonic cavity flow and application of integral methods,”

J. Sound Vib. 266, 119–146 (2003).
25A. P. Dowling and J. E. Ffowcs Williams, Sound and Sources of Sound

(Ellis Horwood, Chichester, 1983).
26D. M. Chase, “Sound radiated by turbulent flow off a rigid half-plane as

obtained from a wave vector spectrum of hydrodynamic pressure,”

J. Acoust. Soc. Am. 52, 1011–1023 (1972).
27O. L�eon and J.-P. Brazier, “Investigation of the near and far pressure fields

of dual-stream jets using an Euler-based PSE model,” in 19th AIAA/CEAS
Aeroacoustics Conference (2013).

28A. V. G. Cavalieri, G. Daviller, P. Comte, P. Jordan, G. Tadmor, and Y.

Gervais, “Using Large Eddy Simulation to explore sound-source mecha-

nisms in jets,” J. Sound Vib. 330, 4098–4113 (2011).
29R. Serr�e and F. Margnat, “Modeling aeroacoustic excitations by subsonic

wave packets in the Kirchhoff formalism,” in 21e Congrès Français de
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