36 research outputs found
Onset of thermal ripples at the interface of an evaporating liquid under a flow of inert gas
peer reviewe
Scroll waves in isotropic excitable media : linear instabilities, bifurcations and restabilized states
Scroll waves are three-dimensional analogs of spiral waves. The linear
stability spectrum of untwisted and twisted scroll waves is computed for a
two-variable reaction-diffusion model of an excitable medium. Different bands
of modes are seen to be unstable in different regions of parameter space. The
corresponding bifurcations and bifurcated states are characterized by
performing direct numerical simulations. In addition, computations of the
adjoint linear stability operator eigenmodes are also performed and serve to
obtain a number of matrix elements characterizing the long-wavelength
deformations of scroll waves.Comment: 30 pages 16 figures, submitted to Phys. Rev.
P9 - C.F.A.O : MISE AU POINT D’UN PROTOCOLE D’ÉVALUATION DES CONTRAINTES MÉCANIQUES POUR LES COIFFES PÉRIPHÉRIQUES « TOUT CÉRAMIQUE »
Clarifying the meaning of mantras in wildland fire behaviour modelling: reply to Cruz <i>et al.</i> (2017)
International audienceIn a recent communication, Cruz et al. (2017) called attention to several recurring statements (mantras) in the wildland fire literature regarding empirical and physical fire behaviour models. Motivated by concern that these mantras have not been fully vetted and are repeated blindly, Cruz et al. (2017) sought to verify five mantras they identify. This is a worthy goal and here we seek to extend the discussion and provide clarification to several confusing aspects of the Cruz et al. (2017) communication. In particular, their treatment of what they call physical models is inconsistent, neglects to reference current research activity focussed on combined experimentation and model development, and misses an opportunity to discuss the potential use of physical models to fire behaviour outside the scope of empirical approaches
The different equations of motion of the central line of a slender vortex filament and their use to study perturbed vortices
A comparison between the equation of motion of the central line of a slender vortex filament deduced from a matched asymptotic expansion(A. Callegari and L. Ting) and the expansion of the equation of motion of the ad-hoc cut-off methods(S. Crow) with the cut-off length as the small asymptotic parameter is performed. It justifies the cut-off methods and gives the link between the cut-off lengths and the thickness of a viscous or inviscid vortex with an axial velocity component. The asymptotic equation of motion for an open filament is then simplified in case of a perturbed straight filament and different regimes are displayed. They depend of relatives values of the amplitude of the perturbation and the small thickness of the filament
Influence of evaporation on Bénard-Marangoni instability in a liquid-gas bilayer with a deformable interface
Bénard-Marangoni instability in a bilayer liquid-gas system with a
deformable interface is investigated. The present work is devoted to a
linear approach. We discuss the influence on the onset of stability of the
following parameters: initial temperature profile, relative thickness of the
gas and liquid layers, deformation of the interface, influence of the
evaporation process, and the wetting parameter
Linear and nonlinear analyses of convective instabilities in evaporating liquid layers
peer reviewe
On the use of Galerkin-Eckhaus method to study the nonlinear regime of Marangoni-Bénard instabilities in an evaporating liquid layer
We investigate theoretically Marangoni-Bénard instability in an evaporating liquid layer surmounted by its vapor and an inert gas. A Galerkin-Eckhaus method, based on a slaving principle and an iterative algorithm, and a direct finite element method are used to determine the evaporation rate above the convective threshold. Both methods provide precise quantitative results, even far from the linear stability threshold. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 200647.20.Ky Nonlinearity, bifurcation, and symmetry breaking, 47.20.Hw Morphological instability; phase changes, 47.20.Dr Surface-tension-driven instability, 47.55.pf Marangoni convection,
