90 research outputs found
Estradiol and tamoxifen regulate NRF-1 and mitochondrial function in mouse mammary gland and uterus
Nuclear respiratory factor-1 (NRF-1) stimulates the transcription of nuclear-encoded genes that regulate mitochondrial (mt) genome transcription and biogenesis. We reported that estradiol (E2) and 4-hydroxytamoxifen (4-OHT) stimulate NRF-1 transcription in an estrogen receptor ? (ER?)- and ER?-dependent manner in human breast cancer cells. The aim of this study was to determine whether E2 and 4-OHT increase NRF-1 in vivo. Here, we report that E2 and 4-OHT increase NRF-1 expression in mammary gland (MG) and uterus of ovariectomized C57BL/6 mice in a time-dependent manner. E2 increased NRF-1 protein in the uterus and MG; however, in MG, 4-OHT increased Nrf1 mRNA but not protein. Chromatin immunoprecipitation assays revealed increased in vivorecruitment of ER? to the Nrf1 promoter and intron 3 in MG and uterus 6 h after E2 and 4-OHT treatment, commensurate with increased NRF-1 expression. E2- and 4-OHT-induced increases in NRF-1 and its target genes Tfam, Tfb1m, and Tfb2m were coordinated in MG but not in uterus due to uterine-selective inhibition of the expression of the NRF-1 coactivators Ppargc1a and Ppargc1b by E2 and 4-OHT. E2 transiently increased NRF-1 and PGC-1? nuclear staining while reducing PGC-1? in uterus. E2, not 4-OHT, activates mt biogenesis in MG and uterus in a time-dependent manner. E2 increased mt outer membrane Tomm40 protein levels in MG and uterus whereas 4-OHT increased Tomm40 only in uterus. These data support the hypothesis of tissue-selective regulation of NRF-1 and its downstream targets by E2 and 4-OHT in vivo
Identification and Characterization of Nucleolin as a COUP-TFII Coactivator of Retinoic Acid Receptor β Transcription in Breast Cancer Cells
The orphan nuclear receptor COUP-TFII plays an undefined role in breast cancer. Previously we reported lower COUP-TFII expression in tamoxifen/endocrine-resistant versus sensitive breast cancer cell lines. The identification of COUP-TFII-interacting proteins will help to elucidate its mechanism of action as a transcriptional regulator in breast cancer.FLAG-affinity purification and multidimensional protein identification technology (MudPIT) identified nucleolin among the proteins interacting with COUP-TFII in MCF-7 tamoxifen-sensitive breast cancer cells. Interaction of COUP-TFII and nucleolin was confirmed by coimmunoprecipitation of endogenous proteins in MCF-7 and T47D breast cancer cells. In vitro studies revealed that COUP-TFII interacts with the C-terminal arginine-glycine repeat (RGG) domain of nucleolin. Functional interaction between COUP-TFII and nucleolin was indicated by studies showing that siRNA knockdown of nucleolin and an oligonucleotide aptamer that targets nucleolin, AS1411, inhibited endogenous COUP-TFII-stimulated RARB2 expression in MCF-7 and T47D cells. Chromatin immunoprecipitation revealed COUP-TFII occupancy of the RARB2 promoter was increased by all-trans retinoic acid (atRA). RARβ2 regulated gene RRIG1 was increased by atRA and COUP-TFII transfection and inhibited by siCOUP-TFII. Immunohistochemical staining of breast tumor microarrays showed nuclear COUP-TFII and nucleolin staining was correlated in invasive ductal carcinomas. COUP-TFII staining correlated with ERα, SRC-1, AIB1, Pea3, MMP2, and phospho-Src and was reduced with increased tumor grade.Our data indicate that nucleolin plays a coregulatory role in transcriptional regulation of the tumor suppressor RARB2 by COUP-TFII
Genomic analysis of Caldithrix abyssi, the thermophilic anaerobic bacterium of the novel bacterial phylum Calditrichaeota
The genome of Caldithrix abyssi, the first cultivated representative of a phylum-level bacterial lineage, was sequenced within the framework of Genomic Encyclopedia of Bacteria and Archaea (GEBA) project. The genomic analysis revealed mechanisms allowing this anaerobic bacterium to ferment peptides or to implement nitrate reduction with acetate or molecular hydrogen as electron donors. The genome encoded five different [NiFe]- and [FeFe]-hydrogenases, one of which, group 1 [NiFe]-hydrogenase, is presumably involved in lithoheterotrophic growth, three other produce H2 during fermentation, and one is apparently bidirectional. The ability to reduce nitrate is determined by a nitrate reductase of the Nap family, while nitrite reduction to ammonia is presumably catalyzed by an octaheme cytochrome c nitrite reductase εHao. The genome contained genes of respiratory polysulfide/thiosulfate reductase, however, elemental sulfur and thiosulfate were not used as the electron acceptors for anaerobic respiration with acetate or H2, probably due to the lack of the gene of the maturation protein. Nevertheless, elemental sulfur and thiosulfate stimulated growth on fermentable substrates (peptides), being reduced to sulfide, most probably through the action of the cytoplasmic sulfide dehydrogenase and/or NAD(P)-dependent [NiFe]-hydrogenase (sulfhydrogenase) encoded by the genome. Surprisingly, the genome of this anaerobic microorganism encoded all genes for cytochrome c oxidase, however, its maturation machinery seems to be non-operational due to genomic rearrangements of supplementary genes. Despite the fact that sugars were not among the substrates reported when C. abyssi was first described, our genomic analysis revealed multiple genes of glycoside hydrolases, and some of them were predicted to be secreted. This finding aided in bringing out four carbohydrates that supported the growth of C. abyssi: starch, cellobiose, glucomannan and xyloglucan. The genomic analysis demonstrated the ability of C. abyssi to synthesize nucleotides and most amino acids and vitamins. Finally, the genomic sequence allowed us to perform a phylogenomic analysis, based on 38 protein sequences, which confirmed the deep branching of this lineage and justified the proposal of a novel phylum Calditrichaeota.The work conducted by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported under Contract No. DE-AC02-05CH11231. OS and MSG were supported by the Russian Science Foundation (RSF, grant 14-24-00155). EB-O and SG were supported by the RSF grant 14-24-00165. IK, NC, AL, and MM were supported by the Russian Foundation for Basic Research grant 14-04-00503.http://www.frontiersin.orgam2017Biochemistr
Binary systems and their nuclear explosions
Peer ReviewedPreprin
Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults
Background Underweight and obesity are associated with adverse health outcomes throughout the life course. We
estimated the individual and combined prevalence of underweight or thinness and obesity, and their changes, from
1990 to 2022 for adults and school-aged children and adolescents in 200 countries and territories.
Methods We used data from 3663 population-based studies with 222 million participants that measured height and
weight in representative samples of the general population. We used a Bayesian hierarchical model to estimate
trends in the prevalence of different BMI categories, separately for adults (age ≥20 years) and school-aged children
and adolescents (age 5–19 years), from 1990 to 2022 for 200 countries and territories. For adults, we report the
individual and combined prevalence of underweight (BMI <18·5 kg/m2) and obesity (BMI ≥30 kg/m2). For schoolaged children and adolescents, we report thinness (BMI <2 SD below the median of the WHO growth reference)
and obesity (BMI >2 SD above the median).
Findings From 1990 to 2022, the combined prevalence of underweight and obesity in adults decreased in
11 countries (6%) for women and 17 (9%) for men with a posterior probability of at least 0·80 that the observed
changes were true decreases. The combined prevalence increased in 162 countries (81%) for women and
140 countries (70%) for men with a posterior probability of at least 0·80. In 2022, the combined prevalence of
underweight and obesity was highest in island nations in the Caribbean and Polynesia and Micronesia, and
countries in the Middle East and north Africa. Obesity prevalence was higher than underweight with posterior
probability of at least 0·80 in 177 countries (89%) for women and 145 (73%) for men in 2022, whereas the converse
was true in 16 countries (8%) for women, and 39 (20%) for men. From 1990 to 2022, the combined prevalence of
thinness and obesity decreased among girls in five countries (3%) and among boys in 15 countries (8%) with a
posterior probability of at least 0·80, and increased among girls in 140 countries (70%) and boys in 137 countries (69%)
with a posterior probability of at least 0·80. The countries with highest combined prevalence of thinness and
obesity in school-aged children and adolescents in 2022 were in Polynesia and Micronesia and the Caribbean for
both sexes, and Chile and Qatar for boys. Combined prevalence was also high in some countries in south Asia, such
as India and Pakistan, where thinness remained prevalent despite having declined. In 2022, obesity in school-aged
children and adolescents was more prevalent than thinness with a posterior probability of at least 0·80 among girls
in 133 countries (67%) and boys in 125 countries (63%), whereas the converse was true in 35 countries (18%) and
42 countries (21%), respectively. In almost all countries for both adults and school-aged children and adolescents,
the increases in double burden were driven by increases in obesity, and decreases in double burden by declining
underweight or thinness.
Interpretation The combined burden of underweight and obesity has increased in most countries, driven by an
increase in obesity, while underweight and thinness remain prevalent in south Asia and parts of Africa. A healthy
nutrition transition that enhances access to nutritious foods is needed to address the remaining burden of
underweight while curbing and reversing the increase in obesit
Rapid Clathrin-Mediated Uptake of Recombinant α-Gal-A to Lysosome Activates Autophagy
Enzyme replacement therapy (ERT) with recombinant alpha-galactosidase A (rh-α-Gal A) is the standard treatment for Fabry disease (FD). ERT has shown a significant impact on patients; however, there is still morbidity and mortality in FD, resulting in progressive cardiac, renal, and cerebrovascular pathology. The main pathway for delivery of rh-α-Gal A to lysosome is cation-independent mannose-6-phosphate receptor (CI-M6PR) endocytosis, also known as insulin-like growth factor 2 receptor (IGF2R) endocytosis. This study aims to investigate the mechanisms of uptake of rh-α-Gal-A in different cell types, with the exploration of clathrin-dependent and caveolin assisted receptor-mediated endocytosis and the dynamics of autophagy-lysosomal functions. rh-α-Gal-A uptake was evaluated in primary fibroblasts, urine originated kidney epithelial cells, and peripheral blood mononuclear cells derived from Fabry patients and healthy controls, and in cell lines HEK293, HTP1, and HUVEC. Uptake of rh-α-Gal-A was more efficient in the cells with the lowest endogenous enzyme activity. Chloroquine and monensin significantly blocked the uptake of rh-α-Gal-A, indicating that the clathrin-mediated endocytosis is involved in recombinant enzyme delivery. Alternative caveolae-mediated endocytosis coexists with clathrin-mediated endocytosis. However, clathrin-dependent endocytosis is a dominant mechanism for enzyme uptake in all cell lines. These results show that the uptake of rh-α-Gal-A occurs rapidly and activates the autophagy-lysosomal pathway
Impaired autophagic and mitochondrial functions are partially restored by ERT in Gaucher and Fabry diseases.
The major cellular clearance pathway for organelle and unwanted proteins is the autophagy-lysosome pathway (ALP). Lysosomes not only house proteolytic enzymes, but also traffic organelles, sense nutrients, and repair mitochondria. Mitophagy is initiated by damaged mitochondria, which is ultimately degraded by the ALP to compensate for ATP loss. While both systems are dynamic and respond to continuous cellular stressors, most studies are derived from animal models or cell based systems, which do not provide complete real time data about cellular processes involved in the progression of lysosomal storage diseases in patients. Gaucher and Fabry diseases are rare sphingolipid disorders due to the deficiency of the lysosomal enzymes; glucocerebrosidase and α-galactosidase A with resultant lysosomal dysfunction. Little is known about ALP pathology and mitochondrial function in patients with Gaucher and Fabry diseases, and the effects of enzyme replacement therapy (ERT). Studying blood mononuclear cells (PBMCs) from patients, we provide in vivo evidence, that regulation of ALP is defective. In PBMCs derived from Gaucher patients, we report a decreased number of autophagic vacuoles with increased cytoplasmic localization of LC3A/B, accompanied by lysosome accumulation. For both Gaucher and Fabry diseases, the level of the autophagy marker, Beclin1, was elevated and ubiquitin binding protein, SQSTM1/p62, was decreased. mTOR inhibition did not activate autophagy and led to ATP inhibition in PBMCs. Lysosomal abnormalities, independent of the type of the accumulated substrate suppress not only autophagy, but also mitochondrial function and mTOR signaling pathways. ERT partially restored ALP function, LC3-II accumulation and decreased LC3-I/LC3-II ratios. Levels of lysosomal (LAMP1), autophagy (LC3), and mitochondrial markers, (Tfam), normalized after ERT infusion. In conclusion, there is mTOR pathway dysfunction in sphingolipidoses, as observed in both PBMCs derived from patients with Gaucher and Fabry diseases, which leads to impaired autophagy and mitochondrial stress. ERT partially improves ALP function
Sex Differences in Estrogen Receptor Subcellular Location and Activity in Lung Adenocarcinoma Cells
The role of estrogens in the increased risk of lung adenocarcinoma in women remains uncertain. We reported that lung adenocarcinoma cell lines from female, but not male, patients with non–small cell lung cancer respond proliferatively and transcriptionally to estradiol (E2), despite equal protein expression of estrogen receptors (ER) α and β. To test the hypothesis that nuclear localization of ERα corresponds to genomic E2 activity in lung adenocarcinoma cells from females, cell fractionation, immunoblot, and confocal immunohistochemical microscopy were performed. We report for the first time that E2 increases phospho-serine-118-ERα (P-ser118-ERα) and cyclin D1 (CCND1) nuclear colocalization in H1793, but not A549 lung adenocarcinoma cells, derived from a female and male patient, respectively. ERβ was primarily in the cytoplasm and mitochondria, independent of E2 treatment, and showed no difference between H1793 and A549 cells. E2 induced higher transcription of endogenous ERα-regulated CCND1 in H1793 than in A549 cells. Likewise, higher rapid, non-genomic E2-induced extracellular signal–regulated kinase 1/2 activation was detected in H1793 compared with A549 cells, linking extracellular signal–regulated kinase activation to increased P-ser118-ERα. Furthermore, E2 increased cyclin D1 and P-ser118-ERα nuclear localization in H1793, but not A549 cells. Together, our results indicate that nuclear localization of P-ser118-ERα provides one explanation for sex-dependent differences in E2-genomic responses in lung adenocarcinoma cell lines
Circulated TGF-β1 and VEGF-A as Biomarkers for Fabry Disease-Associated Cardiomyopathy
Fabry disease (FD) is a lysosomal disorder caused by α-galactosidase A deficiency, resulting in the accumulation of globotriaosylceramide (Gb-3) and its metabolite globotriaosylsphingosine (Lyso-Gb-3). Cardiovascular complications and hypertrophic cardiomyopathy (HCM) are the most frequent manifestations of FD. While an echocardiogram and cardiac MRI are clinical tools to assess cardiac involvement, hypertrophic pattern variations and fibrosis make it crucial to identify biomarkers to predict early cardiac outcomes. This study aims to investigate potential biomarkers associated with HCM in FD: transforming growth factor-β1 (TGF-β1), TGF-β active form (a-TGF-β), vascular endothelial growth factor (VEGF-A), and fibroblast growth factor (FGF2) in 45 patients with FD, categorized into cohorts based on the HCM severity. TGF-β1, a-TGF-β, FGF2, and VEGF-A were elevated in FD. While the association of TGF-β1 with HCM was not gender-related, VEGF was elevated in males with FD and HCM. Female patients with abnormal electrocardiograms but without overt HCM also have elevated TGF-β1. Lyso-Gb3 is correlated with TGF-β1, VEGF-A, and a-TGF-β1. Elevation of TGF-β1 provides evidence of the chronic inflammatory state as a cause of myocardial fibrosis in FD patients; thus, it is a potential marker of early cardiac fibrosis detected even prior to hypertrophy. TGF-β1 and VEGF biomarkers may be prognostic indicators of adverse cardiovascular events in FD
- …