10 research outputs found

    On non representable preferences

    Get PDF
    In this note, we prove that for every non-separable metric space there is a continuous preference ordering which is non respresentable by an utility function

    On non representable preferences.

    Get PDF
    In this note, we prove that for every non-separable metric space there is a continuous preference ordering which is non respresentable by an utility function.Preference Ordening; Utility Function; Non Separable Metric Space;

    Espacios separablemente conexos. Separably connected spaces.

    Get PDF
    A topological spaces is said to be separably connected if any two points are contained in a connected and separable subspace. In this work we study the properties of the separably connected spaces in relation with the properties of connectedand path conneted spaces.

    A note on representation of references

    Get PDF
    We consider a class of relations which includes irreflexive preference relations and interdependent preferences. For this class, we obtain necessary and sufficient conditions for representation of the relation by two numerical functions in the sense of a < x if and only if u(a) < v(x)

    A note on representation of references.

    Get PDF
    We consider a class of relations which includes irreflexive preference relations and interdependent preferences. For this class, we obtain necessary and sufficient conditions for representation of the relation by two numerical functions in the sense of aPreference; Continuous representation; Pseudotransitivity; Biorders;

    Una nota sobre la representación numérica de relaciones de preferencia

    Get PDF
    En esta nota se estudia la existencia de representación de una preferencia < definida en un espacio topológico X mediante dos funciones reales u y v, continuas en X de modo que x < y si o sólo si u(x) < v(y). Generalizamos al easo pseudotransitivo un resultado de P.K. Monteiro relativo a preórdenes completos para obtener, en el marco de los espacios topológicos conexos por arcos, condiciones necesarias y suficientes para la existencia de representación

    Espacios separablemente conexos. Separably connected spaces

    No full text
    A topological spaces is said to be separably connected if any two points are contained in a connected and separable subspace. In this work we study the properties of the separably connected spaces in relation with the properties of connectedand path conneted spaces.Publicad
    corecore