1,164 research outputs found

    Does IT Spending Matter on Hospital Financial Performance and Quality?

    Get PDF
    This research explored impacts of IT spending on hospital financial performance and hospital quality. We developed two research hypotheses accordingly. The first hypothesis was that IT spending would be positively related to the hospital financial performance, and the second hypothesis was that hospitals with higher IT spending would have better quality metrics. We used the 2017 American Hospital Association Survey data and the HCAHPS dataset from Medicare website. We tested three hospital financials and three quality measures. We employed T-Tests and ANOVA models to test the hypotheses. Results were inconclusive for both hypotheses. Evidence showed statistical significance on two out of seven tests

    Specifiche per il progetto del corso

    Get PDF

    On the Feasibility of Social Network-based Pollution Sensing in ITSs

    Full text link
    Intense vehicular traffic is recognized as a global societal problem, with a multifaceted influence on the quality of life of a person. Intelligent Transportation Systems (ITS) can play an important role in combating such problem, decreasing pollution levels and, consequently, their negative effects. One of the goals of ITSs, in fact, is that of controlling traffic flows, measuring traffic states, providing vehicles with routes that globally pursue low pollution conditions. How such systems measure and enforce given traffic states has been at the center of multiple research efforts in the past few years. Although many different solutions have been proposed, very limited effort has been devoted to exploring the potential of social network analysis in such context. Social networks, in general, provide direct feedback from people and, as such, potentially very valuable information. A post that tells, for example, how a person feels about pollution at a given time in a given location, could be put to good use by an environment aware ITS aiming at minimizing contaminant emissions in residential areas. This work verifies the feasibility of using pollution related social network feeds into ITS operations. In particular, it concentrates on understanding how reliable such information is, producing an analysis that confronts over 1,500,000 posts and pollution data obtained from on-the- field sensors over a one-year span.Comment: 10 pages, 15 figures, Transaction Forma

    Effects of the Uncertainty of Interpersonal Communications on Behavioral Responses of the Participants in an Immersive Virtual Reality Experience: A Usability Study

    Get PDF
    Two common difficulties which people face in their daily lives are managing effective communication with others and dealing with what makes them feel uncertain. Past research highlights that the result of not being able to handle these difficulties influences people’s performance in the task at hand substantially, especially in the context of a social environment such as a workplace. Perceived uncertainty of information is a key influential factor in this regard, with effects on the quality of the information transfer between sender and receiver. Uncertainty of information can be induced into the communication system in three ways: when there is any kind of information deficit that makes the target message unclear for the receiver, when there are some requested changes that could not be predicted by the receiver, and when the content of the message is so interconnected and complex that it limits understanding. Since uncertainty is an inseparable feature of our lives, studying the effects that different levels of it have on individuals and how individuals nevertheless accomplish the tasks of daily living is of high importance. Modern technologies such as immersive virtual reality (VR) have been successful in providing effective platforms to support human behavioral and social well-being studies. In this paper, we suggest the design, development, and evaluation of an immersive VR serious game platform to study behavioral responses to the uncertain features of interpersonal communications. In addition, we report the result of a within-subject user study with 17 participants aged between 20 and 35 and their behavioral responses to two levels of uncertainty with subjective and objective measures. The results convey that the application successfully and meaningfully measured some behavioral responses related to exposure to different levels of uncertainty and overall, the participants were satisfied with the experience

    An approach for the modeling of interface-body coupled nonlocal damage

    Get PDF
    Fiber Reinforced Plastic (FRP) can be used for strengthening concrete or masonry constructions.One of the main problem in the use of FRP is the possible detachment of the reinforcement from the supportmaterial. This paper deals with the modeling of the FRP-concrete or masonry damage interface, accounting forthe coupling occurring between the degradation of the cohesive material and the FRP detachment. To this end,a damage model is considered for the quasi-brittle material. In order to prevent strain localization and strongmesh sensitivity of the solution, an integral-type of nonlocal model based on the weighted spatial averaging of astrain-like quantity is developed. Regarding the interface, the damage is governed by the relative displacementoccurring at bond. A suitable interface model which accounts for the mode I, mode II and mixed mode ofdamage is developed. The coupling between the body damage and the interface damage is performedcomputing the body damage on the bond surface. Numerical examples are presented

    A coupled interface-body nonlocal damage model for the analysis of FRP strengthening detachment from cohesive material

    Get PDF
    In the present work, a new model of the FRP-concrete or masonry interface, which accounts for the coupling occurring between the degradation of the cohesive material and the FRP detachment, is presented; in particular, a coupled interface-body nonlocal damage model is proposed. A nonlocal damage and plasticity model is developed for the quasi-brittle material. For the interface, a model which accounts for the mode I, mode II and mixed mode of damage and for the unilateral contact and friction effects is developed. Two different ways of performing the coupling between the body damage and the interface damage are proposed and compared. Some numerical applications are carried out in order to assess the performances of the proposed model in reproducing the mechanical behavior of the masonry elements strengthened with external FRP reinforcements

    Response of porous SMA: a micromechanical study

    Get PDF
    Lately porous shape memory alloys (SMA) have attracted great interest as low weight materials characterized by high energy dissipation capability. In the present contribution a micromechanical study of porous SMA is proposed, introducing the simplifying hypothesis of periodic distribution of voids. The mechanical response of the heterogeneous porous medium is derived by performing nonlinear finite element micromechanical analyses considering a typical repetitive unit cell made of a circular hole in a dense SMA matrix and prescribing suitable periodicity and continuity conditions. The constitutive behavior and the dissipation energy capability of the porous Nitinol are examined for several porosity levels. Numerical applications are performed in order to test the ability of the proposed procedure to well capture the overall behavior and the key features of the special heterogeneous material

    An approach for the modeling of interface-body coupled nonlocal damage

    Get PDF
    Fiber Reinforced Plastic (FRP) can be used for strengthening concrete or masonry constructions. One of the main problem in the use of FRP is the possible detachment of the reinforcement from the support material. This paper deals with the modeling of the FRP-concrete or masonry damage interface, accounting for the coupling occurring between the degradation of the cohesive material and the FRP detachment. To this end, a damage model is considered for the quasi-brittle material. In order to prevent strain localization and strong mesh sensitivity of the solution, an integral-type of nonlocal model based on the weighted spatial averaging of a strain-like quantity is developed. Regarding the interface, the damage is governed by the relative displacement occurring at bond. A suitable interface model which accounts for the mode I, mode II and mixed mode of damage is developed. The coupling between the body damage and the interface damage is performed computing the body damage on the bond surface. Numerical examples are presented
    corecore